HomeNewsIndia News2D Semiconductor Hybrid Shows Promise For Future Optoelectronics

    2D Semiconductor Hybrid Shows Promise For Future Optoelectronics

    OIST research suggests MoS2–organic heterojunctions can serve as hybrid solar cells

    In a research work published in ACS Nano, by Okinawa Institute of Science and Technology Graduate University (OIST), Japan, new ways to improve optoelectronic devices by adding a 2D layer of n-type MoS2 to an organic semiconductor has been suggested.

    The theory behind using both materials is that the interaction between the MoS2 layer and the organic semiconductor (a polymer: fullerene blend with similar absorption strengths as MoS2) should lead to efficient charge transfer.

    The thinness of 2D materials is a limiting factor in their efficiency as light-energy conversion devices  because a certain optical thickness is needed in order to absorb photons, rather than allowing them to pass through. To overcome this, the researchers added an array of silver nanoparticles, or a plasmonic met surface, to the organic semiconductor-MoS2 hybrid to focus and localise the light in the device.

    The addition of the metasurface increases the optical thickness of the material while capitalising on the unique properties of the ultra-thin active layer, which ultimately increases the total absorption.

    The research was carried out by Christopher Petoukhoff, a Rutgers University graduate student working in the Femtosecond Spectroscopy Unit of OIST under the supervision of Keshav Dani. He demonstrated for the first time that charge transfer between these two layers occurs at an ultra-fast timescale, on the order of less than 100 femtoseconds, or one tenth of one millionth of one millionth of a second.

    The team thinks that MoS2–organic heterojunctions can serve as hybrid solar cells, and their efficiencies can be improved using plasmonic metasurfaces.

    While this research is still in its infancy, it has important implications for the future, according to the group. Conventional optoelectronic devices are expensive to manufacture and are often made from scarce or toxic elements, such as indium or arsenic. Organic semiconductors have low manufacturing costs, and are made of earth-abundant and non-toxic elements.

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Related News

    Must Read

    AI Glasses: Ushering in the Next Generation of Advanced Wearable Technology

    Courtesy: NXP Semiconductors   AI integration into wearable technology is...

    The semiconductor technology shaping the autonomous driving experience

    Courtesy: Texas Instruments Last summer in Italy, I held...

    The electronics Industry in 2026 and Beyond: A Strategic Crossroads

    As we stand on the threshold of 2026, the...

    Keysight & Samsung: Industry-First NR-NTN S-Band & Satellite Mobility Success

    Keysight Technologies announced a groundbreaking end-to-end live new radio non-terrestrial...

    Quantum Technology 2.0: Road to Transformation

    Courtesy: Rhode & Schwarz After more than 100 years of...

    Develop Highly Efficient X-in-1 Integrated Systems for EVs

    Courtesy: Renesas The recent tightening of CO2 emission regulations has...

    Cadence to deliver pre-validated chiplet solutions to Accelerate Chiplet Time to Market

    Cadence announced a Chiplet Spec-to-Packaged Parts ecosystem to reduce...

    Microchip Releases Custom Firmware For NVIDIA DGX Spark For Its MEC1723 Embedded Controllers

    Microchip Technology announced the release of custom-designed firmware for...

    Infineon and HL Klemove collaborate to advance innovation for SDVs

    Infineon Technologies AG and HL Klemove aim to strengthen...