HomePress ReleaseVishay Intertechnology Gen 4.5 650 V E Series Power MOSFET Delivers Industry's...

    Vishay Intertechnology Gen 4.5 650 V E Series Power MOSFET Delivers Industry’s Lowest RDS(ON)*Qg and RDS(ON)*Co(er) FOMs

    Superjunction Device Enables High Power Ratings and Density While Lowering Conduction and Switching Losses to Increase Efficiency

    Vishay Intertechnology, Inc. introduced a new Gen 4.5 650 V E Series power MOSFET that delivers high efficiency and power density for telecom, industrial, and computing applications. Compared to previous-generation devices, the Vishay Siliconix n-channel slashes on-resistance by 48.2 % while offering a 65.4 % lower resistance times gate charge, a key figure of merit (FOM) for 650 V MOSFETs used in power conversion applications.

    Vishay offers a broad line of MOSFET technologies that support all stages of the power conversion process, from high voltage inputs to the low voltage outputs required to power the latest high tech equipment. With the SiHK050N65E and other devices in the Gen 4.5 650 V E Series family, the company is addressing the need for efficiency and power density improvements in two of the first stages of the power system architecture — power factor correction (PFC) and subsequent DC/DC converter blocks. Typical applications will include servers, edge computing, and super computers; UPS; high intensity discharge (HID) lamps and fluorescent ballast lighting; telecom SMPS; solar inverters; welding equipment; induction heating; motor drives; and battery chargers.Built on Vishay’s latest energy-efficient E Series superjunction technology, the SiHK050N65E’s low typical on-resistance of 0.048 Ω at 10 V results in a higher power rating for applications > 6 kW. With 50 V of additional breakdown voltage, the 650 V device addresses 200 VAC to 277 VAC input voltages and the Open Compute Project’s Open Rack V3 (ORV3) standards. In addition, the MOSFET offers ultra low gate charge down to 78 nC. The resulting FOM of 3.74 Ω*nC translates into reduced conduction and switching losses to save energy and increase efficiency. This allows the device to address the specific titanium efficiency requirements in server power supplies or reach 96 % peak efficiency.

    Related News

    Must Read

    Top 10 Federated Learning Applications and Use Cases

    Nowadays, individuals own an increasing number of devices—such as...

    Top 10 Federated Learning Companies in India

    Federated learning is transforming AI’s potential in India by...

    Top 10 Federated Learning Algorithms

    Federated Learning (FL) has been termed a revolutionary manner...

    Hon’ble PM Shri. Narendra Modi to inaugurate fourth edition of SEMICON India 2025

    Bharat set to welcome delegates from 33 Countries,...

    Rohde & Schwarz extends the broadband amplifier range to 18 GHz

    The new BBA series features higher field strengths for...

    EDOM Strengthens NVIDIA Jetson Thor Distribution Across APAC

    Empowering a New Era of Physical AI and Robotics...

    Govt Sanctions 23 Chip Design Ventures Under DLI Scheme

    MeitY approved 23 chip design projects under its Design...

    Rare Earth Export Curbs Lifted by China: India’s Semiconductor and Electronics Sectors Poised to Benefit

    India’s electronics sector, one of the major achievements under...

    MeitY May Announce 2–3 Small Semiconductor Projects Soon

    The Ministry of Electronics and Information Technology (MeitY) has...