HomeNewsIndia NewsFlexible LED and nontoxic Batteries inside the 3D-printed braces

    Flexible LED and nontoxic Batteries inside the 3D-printed braces

    Smart 3D-printed braces that incorporate nontoxic batteries and lights could reduce the time and costs involved in realigning and straightening teeth.   The orthodontic system, conceptualized by researchers at KAUST, involves placing two near-infrared light-emitting diodes (LEDs) and one lithium-ion battery on every tooth in a semitransparent, 3D-printed dental brace.

     The batteries provide energy to turn the near-infrared LEDs on and off, depending on how they are programmed by a dentist, to provide localized light therapy according to the needs of each tooth. Phototherapy enhances bone regeneration and can reduce the time and costs involved in corrective orthodontics.

    The brace would be removable to allow the batteries to be recharged.   “We started embedding flexible LEDs inside 3D-printed braces, but they needed a reliable power supply,” explains Muhammad Hussain who led the study together with PhD student Arwa Kutbee. “After the incidents with the Samsung Galaxy 7 batteries exploding, we realized that traditional batteries in their current form and encapsulation don’t serve our purpose. So we redesigned the state-of-the-art lithium-ion battery technology into a flexible battery, followed by biosafe encapsulation within the braces to make a smart dental brace.”

     The battery was redesigned using a dry-etching technique, which removes the silicon substrate normally found on its back. This process thinned the battery to 2.25mm x 1.7mm and made it flexible. Tests showed that the volumetric energy—the ratio of energy to device size—of the redesigned batteries remained high even after many cycles of continuous operation.   Batteries were then encapsulated in biocompatible soft polymeric materials to prevent the possibility of leakage, making them safe to place in the mouth.

    As a testament to their biocompatibility, when human embryonic kidney cells were cultured on these batteries over a period of days, they thrived and proliferated. The batteries’ electrochemical performance increased linearly with rising temperature, up to 90°C, making them stable.

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    How AI Is Powering the Road to Level 4 Autonomous Driving

    Courtesy: Nvidia When the Society of Automotive Engineers established its...

    Revolutionizing System Design with AI-Powered Real-Time Simulation

    Courtesy: Cadence The rising demand for AI infrastructure is driving...

    Microchip Technology Expands its India Footprint with a New Office Facility in Bengaluru

    Microchip Technology has expanded its India footprint with the...

    How Quantum Sensors and Post-Moore Measurement Tech Are Rewriting Reality

    When the chip industry stopped promising effortless doublings every...

    Rohde & Schwarz Mobile Test Summit 2025 on the future of wireless communications

    Rohde & Schwarz has announced that this year’s Mobile...

    Infineon and SolarEdge collaborate to advance high-efficiency power infrastructure for AI data centres

    Infineon and SolarEdge are partnering to advance the development...

    Evolving Priorities in Design Process of Electronic Devices

    One of the natal and most crucial stages of...

    New Radiation-Tolerant, High-Reliability Communication Interface Solution for Space Applications

    Microchip Technology announced the release of its Radiation-Tolerant (RT) ATA6571RT...