HomeTechnologyHigh Performance ComputingQuantum Technology 2.0: Road to Transformation

    Quantum Technology 2.0: Road to Transformation

    Courtesy: Rhode & Schwarz

    After more than 100 years of research, quantum technology is increasingly finding its way into everyday life. Examples include its use in cell phones, computers, medical imaging methods and automotive navigation systems. But that’s just the beginning. Over the next few years, investment will increase significantly, and lots of other applications will take the world by storm. While test & measurement equipment from Rohde & Schwarz and Zurich Instruments is helping develop these applications, the technology group’s encryption solutions are ensuring more secure communications based on quantum principles.

    Expectations for quantum technology are greater than in almost any other field. That’s no surprise, given the financial implications associated with the technology. For example, consulting firm McKinsey & Company estimates the global quantum technology market could be worth 97 billion dollars by 2035. According to McKinsey, quantum computing alone could be worth 72 billion dollars, and quantum communications up to 15 billion.

    Previous developments clearly show that the projected values are entirely realistic. Many quantum effects have become part of our everyday lives. Modern smartphones, for example, contain several billion transistors, predominantly in flash memory chips. Their function – controlling currents and voltages – is based on the quantum mechanical properties of semiconductors. Even the GPS signals used in navigation systems and the LEDs used in smartphone flashlights are based on findings from quantum research.

    To celebrate these achievements, UNESCO declared 2025 the “International Year of Quantum Science and Technology” – exactly 100 years after German physicist Werner Heisenberg developed his quantum mechanics theory based on the research findings of the time. Quantum technology was also in the spotlight with the 2025 Nobel Prize in Physics, which was awarded to quantum researchers John Clarke, Michel Devoret, and John Martinis.

    Quantum technology 2.0: what can we expect?

    Quantum physics in secure communications: Whether personal or professional, beach holiday snapshots or development proposals for new products, our data and data transmission need to be protected. Companies today consistently name cyberattacks and the resulting consequences as the top risk to their business. Developments in quantum computing are revealing the limits of conventional encryption technologies. Innovations in quantum communications are the key to the future, as they enable reliable detection of unauthorised access. This means you can create a genuine high-security channel for sensitive data.

    Upgrading supply chains: Global flows of goods reach every corner of the Earth, and everything is now just a click away: a new tablet for home use or giveaways for a company party. But behind the scenes lies a complex logistics network of manufacturers, service providers, suppliers, merchants, shipping companies, courier services, and much more. The slightest backlog at a container port or change in the price of purchased items means alternatives must be found – preferably in real time. But the complexity of this task is also beyond what conventional computers can handle.

    Personalised medicine: Everyone is different, and so are our illnesses. Cancer cells, for example, differ from one person to the next and often change over time. These differences and changes are already well documented in analytical terms, which has created huge amounts of data. Big Data is the buzzword. But evaluating this data quickly and effectively, to develop personalised forms of treatment, is impossible for conventional computers.

    Fast. Faster. Quantum computing. 

    Our world is controlled by binary code. Conventional computers process data as sequences of ones and zeros, true or false, off or on. This applies to everything, from simple text processing to virtual reality in the metaverse. But the world we live and work in is becoming increasingly complex. The amount of data we need to process is growing rapidly. In 2024, global digital data traffic had more than quadrupled over the space of just five years to 173.4 zettabytes. By 2029, experts believe this number will reach 527.5 zettabytes, equivalent to 527.5 trillion gigabytes.

    Conventional computers face two insurmountable obstacles as a result: time and complexity. The larger the volume of data, the more time you need to process that data sequentially. The more complex the problem, the lower the probability that a binary code, with only two states, will be able to efficiently calculate a solution. Quantum computers have the potential to overcome both obstacles using insights from modern physics.

    Hand in hand instead of either-or

    Like conventional bits, quantum bits (qubits) form quantum mechanical memory units. In addition to just zeros and ones, they can also assume overlapping, mixed states. This simultaneity represents a fundamental technological paradigm shift. We can now run conventional sequential calculation methods simultaneously, which is why a quantum computer can save so much time.

    But above all, the new quantum mechanical approach allows us to process new and much more complex questions. However, it’s not an either-or decision, either conventional processing power or quantum computing. Instead, what matters is integrating existing and quantum systems depending on the task.

    Physics versus logic

    In the quantum world, a particle can be in two places at the same time. Only when it is observed can you narrow down its location, for example, by measuring it. This unusual property is also why it is extremely unstable. Instead of using individual physical qubits, which can be very error-prone, multiple qubits are grouped into a logical qubit. However, the challenge here is that you need quantum systems with as many as one million logical qubits in order to answer practical questions, like protein folding. A logical qubit can contain up to 100 physical qubits, but the highest processing capacity is currently only 1,225 physical qubits.

    Zurich Instruments has been part of the Rohde & Schwarz family since 2021. The T&M market for quantum computing holds enormous potential for both companies. Operating and maintaining quantum computers requires a wide range of specific T&M solutions because RF signals need to be generated and measured with extremely high precision to effectively create and record quantum states. Control systems for quantum computers are part of the company’s portfolio.

    Secure. More secure. Quantum communications

    Quantum computers have the potential to push the limits of processing efficiency. But this brings challenges, including secure communications – increasingly a priority in view of “Q-Day”, the point at which quantum computers will be able to crack classic encryption.

    That is why alternative encryption methods are becoming increasingly important. There are essentially two main approaches. The first is post-quantum cryptography, which involves conventional encryption methods with one key difference: they can survive attacks from quantum computers unscathed. The algorithms used in this approach are based on theoretical assumptions for which no effective attacks are currently known using either quantum or conventional computers.

    The other approach relates to quantum key distribution (QKD). The German Federal Office for Information Security (BSI) and the National Institute of Standards and Technology (NIST) are two of the main drivers of innovation in this area. In an increasingly digitalised world, private-sector customers, and government customers in particular, are dependent on trustworthy IT security solutions. Secure communications networks have become a critical infrastructure in advanced information societies.

    These innovative solutions are shifting the focus of cryptology. Conventional methods, as well as more recent post-quantum methods, are based on mathematical assumptions, i.e. the idea that certain tasks cannot be calculated with sufficient efficiency. Quantum key distribution, by contrast, is based on physical principles. Rohde & Schwarz Cybersecurity is providing and leveraging its extensive expertise in security solutions, as well as its experience in building and implementing secure devices and systems, in a variety of research projects.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    AI Glasses: Ushering in the Next Generation of Advanced Wearable Technology

    Courtesy: NXP Semiconductors   AI integration into wearable technology is...

    The semiconductor technology shaping the autonomous driving experience

    Courtesy: Texas Instruments Last summer in Italy, I held...

    The electronics Industry in 2026 and Beyond: A Strategic Crossroads

    As we stand on the threshold of 2026, the...

    Keysight & Samsung: Industry-First NR-NTN S-Band & Satellite Mobility Success

    Keysight Technologies announced a groundbreaking end-to-end live new radio non-terrestrial...

    Develop Highly Efficient X-in-1 Integrated Systems for EVs

    Courtesy: Renesas The recent tightening of CO2 emission regulations has...

    Cadence to deliver pre-validated chiplet solutions to Accelerate Chiplet Time to Market

    Cadence announced a Chiplet Spec-to-Packaged Parts ecosystem to reduce...

    Microchip Releases Custom Firmware For NVIDIA DGX Spark For Its MEC1723 Embedded Controllers

    Microchip Technology announced the release of custom-designed firmware for...

    Infineon and HL Klemove collaborate to advance innovation for SDVs

    Infineon Technologies AG and HL Klemove aim to strengthen...