HomeSelf-driving Vehicles with Human-like Perception

    Self-driving Vehicles with Human-like Perception

    How can mobile robots perceive and understand the environment correctly, even if parts of the environment are occluded by other objects? This is a key question that must be solved for self-driving vehicles to safely navigate in large crowded cities. While humans can imagine complete physical structures of objects even when they are partially occluded, existing artificial intelligence (AI) algorithms that enable robots and self-driving vehicles to perceive their environment do not have this capability.

    Robots with AI can already find their way around and navigate on their own once they have learned what their environment looks like. However, perceiving the entire structure of objects when they are partially hidden, such as people in crowds or vehicles in traffic jams, has been a significant challenge. A major step towards solving this problem has now been taken by Freiburg robotics researchers Prof. Dr. Abhinav Valada and Ph.D. student Rohit Mohan from the Robot Learning Lab at the University of Freiburg, which they have presented in two joint publications.

    The two Freiburg scientists have developed the amodal panoptic segmentation task and demonstrated its feasibility using novel AI approaches. Until now, self-driving vehicles have used panoptic segmentation to understand their surroundings.

    This means that they can so far only predict which pixels of an image belong to which “visible” regions of an object such as a person or car, and identify instances of those objects. What they lack so far is being able to also predict the entire shape of objects even when they are partially occluded by other objects next to them. The new task of perception with amodal panoptic segmentation makes this holistic understanding of the environment possible.

    “Amodal” refers to the case that any partial occlusion of objects must be abstracted and instead of viewing them as fragments, there should be a general understanding of viewing them as a whole. Thus, this improved ability of visual recognition will lead to enormous progress in improving the safety of self-driving vehicles.

    Potential to revolutionize urban visual scene understanding

    The researchers have added the new task to established benchmark datasets and made them publicly available. They are now calling on scientists to participate in the benchmarking with their own AI algorithms.

    The goal of this task is the pixel-wise semantic segmentation of the visible regions of amorphous background classes such as roads, vegetation, sky, and the instance segmentation of both the visible and occluded object regions of countable classes such as cars, trucks, and pedestrians.

    The benchmark and datasets are publicly available on the website, including two proposed novel learning algorithms. “We are confident that novel AI algorithms for this task will enable robots to emulate the visual experience that humans have by perceiving complete physical structures of objects,” Valada explains.

    “Amodal panoptic segmentation will significantly help downstream automated driving tasks where occlusion is a major challenge such as depth estimation, optical flow, object tracking, pose estimation, motion prediction, etc. With more advanced AI algorithms for this task, the visual recognition ability of self-driving cars can be revolutionized. For example, if the entire structure of road users is perceived at all times, regardless of partial occlusions, the risk of accidents can be significantly minimized.”

    In addition, by inferring the relative depth ordering of objects in a scene, automated vehicles can make complex decisions such as in which direction to move toward the object to get a clearer view. In order to make these visions a reality, the task and its benefits were presented to leading automotive industry professionals at AutoSens, which was held at the Autoworld Museum in Brussels.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    R&S showcases its comprehensive embedded systems test solutions at embedded world 2026

    Rohde & Schwarz will present its advanced test and...

    Toxics Link study Finds a Long Road to Circularity in India’s E-waste EPR Model

    A new report by an environmental group, Toxics Link,...

    ESGDS’ AI platform slashes data processing time by 98% with MongoDB Atlas

    ESG Data & Solutions (ESGDS) is a fast-growing Indian...

    Keysight Unveils 3D Interconnect Designer for Chiplet and 3DIC Advanced Package Designs

     Keysight Technologies introduced 3D Interconnect Designer, a new addition to...

    Jodi Shelton, CEO of GSA – Launches A Bit Personal, a New Podcast Offering Rare, Candid Conversations with the Most Powerful Tech Leaders

    Jodi Shelton, Co-Founder and CEO of the Global Semiconductor Alliance and Shelton...

    Is SDV Really an Automotive or Just A Software-based machine That Moves?

    Speaking at the Auto EV Tech Vision Summit 2025,...

    ROHM’s New Compact, Highly Reliable Package Added to Automotive 40V/60V MOSFET Lineup

    ROHM has expanded its lineup of low-voltage (40V/60V) MOSFETs...

    The Rise of the AgentEngineer: How AI is Orchestrating the Future of Chip Design

    While traditional Electronic Design Automation tools have been faithfully...

    IIIT Hyderabad’s Smart Approach To Sand Mining Enforcement, Incorporating AI in Trucks

    ‘Truck art’ or the hand-painted ‘Horn Ok Please’, ‘Use...

    Applied Materials, CG Power, Lam Research, Larsen & Toubro, and Micron Join the IDTA

    The India Deep Tech Alliance (IDTA) announced that Applied...