HomeTechnologySecurityEstablishing a Robust and Flexible Framework for Post-Quantum Security

    Establishing a Robust and Flexible Framework for Post-Quantum Security

    Given the rapid advances in quantum computing, it is urgent now to urge the application of post-quantum cryptography (PQC). Every industry must armor its computing infrastructure against the increasing risk of quantum-enabled attacks. The lack of a singular all-encompassing standard for PQC creates the demand from the developer community for the proactive design of adaptable, future-proof security solutions.

    Emerging Requirements for PQC and the Hardware-Software Co-Design

    At a recent Security Seminar, the companies governing the evolving PQC requirements and co-design approach of hardware and software were accentuated to attain strong and flexible post-quantum security.

    PQC Evolution

    The emerging quantum landscape has necessitated guidelines for multiple aspects of PQC. One of the most cited guidelines is the U.S.-based Commercial National Security Algorithm Suite 2.0 (CNSA 2.0), recommending advanced PQC algorithms such as Kyber, Dilithium, LMS, and XMSS.

    CNSA 2.0, while good enough as a baseline, is not exhaustive. Here lie its limitations:

    Algorithmic diversity gaps: Popular algorithms such as Falcon or Hamming Quasi-Cyclic (HQC) encryption are not completely integrated. The use of multiple algorithms can reduce single points of failure when used strategically.

    Regional divergence: PQC regulations are under development in different regions. The Cyber Resilience Act (CRA) of the European Union, China’s proprietary research, and NIST-led standards all produce different compliance requirements. In their PQC strategies, multinational organizations need to consider these differences. Designing Agile PQC Infrastructure With PQC standards still changing, developers face the challenge of designing actual security without locking into obsolete algorithms. A PQC system that is future-ready must, therefore, provide for:

    Crypto-Agility

    Crypto-agility is a mechanism for developers to switch between cryptographic algorithms seamlessly with capable protocols in updating in the field. Supporting all algorithm types and hybrid models ensure that security systems flex as quantum threats and standards evolve.

    Upgradability at Scale

    This implies upgrading the infrastructure at scale. Dynamic hardware that can handle new software ensures systems remain secure and performant as algorithms and regulatory requirements change.

    High-Quality Entropy

    Reliable and unpredictable entropy is essential for the generation of encryption keys and random numbers. International standards are joining the chorus in requiring checks for high-quality entropy to guard against predictable key generation that a quantum computer might favor.

    Hardware-Software Co-Design for PQC

    Effective PQC cannot talk alone classically. A co-design approach agilely pairs hardware with flexible software towards future-proof systems. QRNGs use the behavior of subatomic particles to generate sequences that are truly unpredictable, so secure, and verifiable entropy at scale.

    FPGA enhances the PQC infrastructure as Coprocessors performing complex algorithms efficiently. In their field-upgradable nature, they enable organizations to implement crypto-agility with regional or hybrid algorithmic models without compromising performance and trust.

    Staying Prepared for Quantum Threats

    PQC is no longer a future concern-it is here. Developers must now create crypto-agile, entropy-assured, and regionally adaptable systems. Leveraging QRNGs and FPGAs enables secure, upgradable cryptographic engines, ensuring resilience against the evolving quantum threat landscape.

    (This article has been adapted and modified from content on Lattice Semiconductor.)

    Related News

    Must Read

    From Compute to Memory: Redefining AI Performance with Next-Gen Memory and Storage

    Artificial Intelligence has come a long way, transforming what...

    PerfektBlue: Bluetooth Vulnerabilities Put Millions of Vehicles at Risk

    Researchers uncover a chain of flaws in a widely...

    India’s Export Growth Hits 6.18% in Early FY 2025–26, Driven by Electronics, Pharma, and Gems

    During the first five months of FY 2025–26, notwithstanding...

    TI unlocks premium motor control in everyday applications with ultra-low-cost real-time MCUs

    An expansion of TI’s comprehensive C2000 portfolio, the new...

    How Advanced Automation Drives Industrial Adoption of Small Modular Reactors

    Industries worldwide are urged to decarbonize but unable to...

    NOISE AND TVS MOTOR COMPANY PIONEER INDIA’S FIRST EV SMARTWATCH INTEGRATION

    Unveils a Made-in-India, industry-first innovation, turning the smartwatch...

    Infineon expands XENSIV MEMS microphone lineup delivering best-in-class audio and power performance

    Infineon Technologies AG has expanded its XENSIV MEMS microphone...

    New DualPack 3 IGBT7 Modules Deliver High Power Density and Simplify System Integration

    Microchip launches six variants targeting high-growth motor drive, data...