HomeNewsIndia NewsFlexible New Platform for High-Performance Electronics

    Flexible New Platform for High-Performance Electronics

    A team of University of Wisconsin-Madison engineers has created the most functional flexible transistor in the world — and with it, a fast, simple and inexpensive fabrication process that’s easily scalable to the commercial level.

    It’s an advance that could open the door to an increasingly interconnected world, enabling manufacturers to add “smart,” wireless capabilities to any number of large or small products or objects — like wearable sensors and computers for people and animals — that curve, bend, stretch and move.

    Transistors are ubiquitous building blocks of modern electronics. The UW-Madison group’s advance is a twist on a two-decade-old industry standard: a BiCMOS (bipolar complementary metal oxide semiconductor) thin-film transistor, which combines two very different technologies — and speed, high current and low power dissipation in the form of heat and wasted energy — all on one surface.

    As a result, these “mixed-signal” devices (with both analog and digital capabilities) deliver both brains and brawn and are the chip of choice for many of today’s portable electronic devices, including cellphones.

    “The industry standard is very good,” says Zhenqiang (Jack) Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison. “Now we can do the same things with our transistor — but it can bend.”

    Ma is a world leader in high-frequency flexible electronics. He and his collaborators described their advance in the inaugural issue of the journal Flexible Electronics, published Sept. 27.

    Making traditional BiCMOS flexible electronics is difficult, in part because the process takes several months and requires a multitude of delicate, high-temperature steps. Even a minor variation in temperature at any point could ruin all of the previous steps.

    Ma and his collaborators fabricated their flexible electronics on a single-crystal silicon nanomembrane on a single bendable piece of plastic. The secret to their success is their unique process, which eliminates many steps and slashes both the time and cost of fabricating the transistors.

    “In industry, they need to finish these in three months,” he says. “We finished it in a week.”

    He says his group’s much simpler high-temperature process can scale to industry-level production right away.

    “The key is that parameters are important,” he says. “One high-temperature step fixes everything — like glue. Now, we have more powerful mixed-signal tools. Basically, the idea is for flexible electronics to expand with this. The platform is getting bigger.”

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    STMicroelectronics’ new GaN ICs platform for motion control boosts appliance energy ratings

    STMicroelectronics unveiled new smart power components that let home...

    Keysight Hosts AI Thought Leadership Conclave in Bengaluru

     Keysight Technologies, Inc. announced the AI Thought Leadership Conclave, a...

    Government approves 17 projects worth Rs. 7,172 crore under ECMS

    The Ministry of Electronics and IT announced for the...

    BD Soft strengthens cybersecurity offerings for BFSI and Fintech businesses with advanced solutions

    BD Software Distribution Pvt. Ltd. has expanded its Managed...

    Advancing Quantum Computing R&D through Simulation

    Courtesy: Synopsys Even as we push forward into new frontiers...

    Overcoming BEOL Patterning Challenges at the 3-NM Node

    Courtesy: Lam Research ● Controlling critical process parameters is key...

    Driving Innovation with High-Performance but Low-Power Multi-Core MCUs

    Courtesy: Renesas Over the last decade, the number of connected...

    Evolving from IoT to edge AI system development

    Courtesy: Avnet The advancement of machine learning (ML) along with...

    From the grid to the gate: Powering the third energy revolution

    Courtesy: Taylor, Robert, Mannesson, Henrik, Texas Instruments A significant change...

    Rohde & Schwarz India Pvt. Ltd. unveils R&D Centre in New Delhi, India

    Rohde & Schwarz announced the expansion of its Research...