HomeTechnologyArtificial IntelligenceAI Learns to Type on a Phone Like Humans

    AI Learns to Type on a Phone Like Humans

    Touchscreens are notoriously difficult to type on. Since we can’t feel the keys, we rely on the sense of sight to move our fingers to the right places and check for errors, a combination of tasks that is difficult to accomplish simultaneously. To really understand how people type on touchscreens, researchers at Aalto University and the Finnish Center for Artificial Intelligence (FCAI) have created the first artificial intelligence model that predicts how people move their eyes and fingers while typing.

    The AI model can simulate how a human user would type any sentence on any keyboard design. It makes errors, detects them—though not always immediately—and corrects them very much as humans would. The simulation also predicts how people adapt to alternating circumstances, like how their writing style changes when they start using a new auto-correction system or keyboard design.

    “Previously, touchscreen typing has been understood mainly from the perspective of how our fingers move. AI-based methods have helped shed new light on these movements: What we’ve discovered is the importance of deciding when and where to look. Now, we can make much better predictions on how people type on their phones or tablets,” says Dr. Jussi Jokinen, who led the work.

    “Now that we have a realistic simulation of how humans type on touchscreens, it should be a lot easier to optimize keyboard designs for better typing—meaning fewer errors, faster typing, and, most importantly for me, less frustration,” Jokinen explains.

    In addition to predicting how a generic person would type, the model is also able to account for different types of users, like those with motor impairments, and could be used to develop typing aids or interfaces designed with these groups in mind. For those facing no particular challenges, it can deduce from personal writing styles—by noting, for instance, the mistakes that repeatedly occur in texts and emails—what kind of a keyboard, or auto-correction system, would best serve a user.

    The novel approach builds on the group’s earlier empirical research, which provided the basis for a cognitive model of how humans type. The researchers then produced the generative model capable of typing independently. The work was done as part of a larger project on Interactive AI at the Finnish Center for Artificial Intelligence.

    The results are underpinned by a classic machine learning method, reinforcement learning, that the researchers extended to simulate people. Reinforcement learning is normally used to teach robots to solve tasks by trial and error; the team found a new way to use this method to generate behavior that closely matches that of humans—mistakes, corrections, and all.

    “We gave the model the same abilities and bounds that we, as humans, have. When we asked it to type efficiently, it figured out how to best use these abilities. The end result is very similar to how humans to type, without having to teach the model with human data,” Jokinen says.

    Comparison to data of human typing confirmed that the model’s predictions were accurate. In the future, the team hopes to simulate slow and fast typing techniques to, for example, design useful learning modules for people who want to improve their typing.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Renesas Expands Sensing Portfolio with 3 Magnet-Free IPS ICs & Web-Based Design Tool

    New Simulation & Optimization Platform Enables Custom Coil Designs...

    IEEE IEDM, 2025 Showcases Latest Technologies in Microelectronics, Themed “100 Years of FETs”

    The IEEE International Electron Devices Meeting (IEDM) is considered...

    OMNIVISION Introduces Next-Generation 8-MP Image Sensor For Exterior Automotive Cameras

    OMNIVISION announced its latest-generation automotive image sensor: the OX08D20, 8-megapixel (MP) CMOS...

    Vishay Intertechnology Expands Inductor Portfolio with 2000+ New SKUs and Increased Capacity

    Vishay Intertechnology, Inc. announced that it has successfully delivered...

    Keysight to Demonstrate AI-enabled 6G and Wireless Technologies at India Mobile Congress 2025

    Keysight Technologies will demonstrate 20 advanced AI-enabled 6G and...

    Ashwini Vaishnaw Approves NaMo Semiconductor Lab at IIT Bhubaneswar

    As part of a big push towards the development...

    Electric Mobility Drives India’s Power Electronics Expansion

    India is on the verge of an electric revolution....

    India Targets 40% Local Value Addition in Electronics with New Component Scheme

    India's electronics manufacturing landscape is set for a major...