HomeNewsIndia NewsElectronic Structure of Graphene Manipulated for Transistor Applications

    Electronic Structure of Graphene Manipulated for Transistor Applications

    Scientists at the U.S. Department of Energy’s Ames Laboratory were able to successfully manipulate the electronic structure of graphene, which may enable the fabrication of graphene transistors — faster and more reliable than existing silicon-based transistors.

    The researchers were able to theoretically calculate the mechanism by which graphene’s electronic band structure could be modified with metal atoms. The work will guide experimentally the use of the effect in layers of graphene with rare-earth metal ions “sandwiched” (or intercalated) between graphene and its silicon carbide substrate. Because the metal atoms are magnetic the additions can also modify the use of graphene for spintronics.

    “We are discovering new and more useful versions of graphene,” said Ames Laboratory senior scientist Michael C. Tringides. “We found that the placement of the rare earth metals below graphene, and precisely where they are located, in the layers between graphene and its substrate, is critical to manipulating the bands and tune the band gap.”

    Graphene, a two-dimensional layer of carbon, has been extensively studied by researchers everywhere since it was first produced in 2004 because electrons travel much faster along its surface, making it an ideal potential material for future electronic technologies. But the inability to control or tune graphene’s unique properties has been an obstacle to its application.

    Density Functional Theory calculations predicted the configurations necessary to demonstrate control of the band gap structure. “Ames Laboratory is very good at synthesis of materials, and we use theory to precisely determine how to modify the metal atoms,” said Minsung Kim, a postdoctoral research associate. “Our calculations guided the placement so that we can manipulate these quantum properties to behave the way we want them to.”

    The research is further discussed in the paper “Manipulation of Dirac cones in intercalated epitaxial graphene,” authored by Minsung Kim, Michael C. Tringides, Matthew T. Hershberger, Shen Chen, Myron Hupalo, Patricia A. Thiel, Cai-Zhuang Wang, and Kai-Ming Ho; and published in the journal Carbon.

    Article Courtesy: ScienceDaily

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Reinforcement Learning Definition, Types, Examples and Applications

    Reinforcement Learning (RL), unlike other machine learning (ML) paradigms,...

    Infineon drives industry transition to Post-Quantum Cryptography on PSOC Control microcontrollers

    Infineon Technologies AG announced that its microcontrollers (MCUs) in...

    Decision Tree Learning Definition, Types, Examples and Applications

    Decision Tree Learning is a type of supervised machine...

    Renesas Introduces Ultra-Low-Power RL78/L23 MCUs for Next-Generation Smart Home Appliances

    Ultra-low-power RL78/L23 MCUs with segment LCD displays & capacitive...

    STMicroelectronics Appoints MD India

    Anand Kumar is the Managing Director of STMicroelectronics (ST),...

    Top 10 Federated Learning Applications and Use Cases

    Nowadays, individuals own an increasing number of devices—such as...

    Top 10 Federated Learning Companies in India

    Federated learning is transforming AI’s potential in India by...

    Top 10 Federated Learning Algorithms

    Federated Learning (FL) has been termed a revolutionary manner...