HomeElectronicsEmbeddedHigh-Voltage Amplifier Extends Coulomb-Counter Range to ±270 V

    High-Voltage Amplifier Extends Coulomb-Counter Range to ±270 V

    A coulomb counter can measure charge that flows into or out of a battery, and small, dedicated ICs can directly interface with low-to-medium battery voltages of up to about 20 V. By using a high-voltage amplifier as a level shifter, you can extend the input operating range to much higher voltages of the measurement circuit. The LT6375 voltage-difference amplifier includes some features that make this circuit work accurately up to surprisingly wide voltages.

    Coulomb counters operate by measuring the voltage across a sense resistor as an indication of the current that needs to be integrated. Fig. 1 shows the typical connection when using the LTC2941, a low-voltage coulomb counter. The important point is that a coulomb counter really measures voltage, then interprets it as current, and later reports it as charge. By removing the sense resistor, and somehow driving another voltage across the coulomb counter’s sense pins, it will still interpret that voltage as a current and report an accumulated charge.

    ifd2647_f1
    1. A low-voltage coulomb counter, such as the LTC2941, helps simplify low-voltage measurements.

    In Fig. 2, the LT6375’s output is connected to the sense pins of the coulomb counter. The IC is a difference amp, which means it’s an op amp plus precision resistors connected so as to shift the level of a differential input voltage. The operation of the difference amp drives its output voltage to a value of:

    OUT = REF + GAIN × [(+IN) – (-IN)]

    The LT6375 drives its output pin, but the REF pin must be connected to a low-impedance source. Similarly, the LTC2941 expects a low-impedance source at its SENSE+ pin, which is also the supply pin for that IC. You can connect both REF and SENSE+ to the same logic rail used for the I2C interface (such as 3.3 V). By connecting the LT6375’s OUT pin to the SENSE– pin, the LT6375 will impose the difference between its inputs across the inputs of the LTC2941. In effect, the LT6375 acts as a fake sense resistor.

    2. An added voltage-difference amplifier extends the voltage range over which the coulomb counting is possible.
    2. An added voltage-difference amplifier extends the voltage range over which the coulomb counting is possible.

    The accuracy of a difference amp depends to a great extent on the resistor matching. While it’s obvious that resistor mismatch directly affects gain accuracy, it’s less obvious and a more serious concern that this resistor mismatch will cause offset errors. A 1% resistor mismatch would cause an output offset equal to 1% of the voltage over which the circuit level shifts.

    For example, a 48-V input that’s level-shifted to 3 V would result in 450 mV of offset error, which is much too large for this kind of measurement. The LT6375A specifies a minimum common-mode rejection ratio (CMRR) of 97 dB, which means that a 45-V level shift causes an offset of less than 640 μV.

    When designing a high-voltage level-shift circuit, it’s critical to ensure that the op amp’s inputs stay within their valid operating range. For the LT6375, the supply pin is rated up to 60 V, so in some cases, it can be powered from the voltage being measured. This is the arrangement of Fig. 2, where the LT6375 measures current from a 48-V supply.

    3. Dividing the –42-V input voltage by connecting the auxiliary reference pins to the 5-V supply brings the input to within the op amp’s supply range.
    3. Dividing the –42-V input voltage by connecting the auxiliary reference pins to the 5-V supply brings the input to within the op amp’s supply range.

    Finally, the IC includes additional precision resistors that can be configured by external pins to divide the input common-mode range, while keeping the differential gain equal to unity. In Fig. 3, the auxiliary reference pins are all connected to the 5-V supply, which divides the –42-V input voltage to bring it within the op amp’s supply range. For other applications, the op amp within the LT6375 has a unique feature whereby its inputs can operate at voltages higher than the supply pin itself. Combining these features, you can design circuits that can monitor supplies across an input range of ±270 V.

    Kris Lokere is the strategic applications manager for signal-conditioning and mixed-signal products at Linear Technology Corp. He and his team are responsible for amplifiers and high-performance ADCs. Kris has designed multiple op amps and received his MSEE degree from the Katholieke Universiteit Leuven, Belgium.

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Top 10 Federated Learning Companies in India

    Federated learning is transforming AI’s potential in India by...

    Top 10 Federated Learning Algorithms

    Federated Learning (FL) has been termed a revolutionary manner...

    Hon’ble PM Shri. Narendra Modi to inaugurate fourth edition of SEMICON India 2025

    Bharat set to welcome delegates from 33 Countries,...

    Rohde & Schwarz extends the broadband amplifier range to 18 GHz

    The new BBA series features higher field strengths for...

    EDOM Strengthens NVIDIA Jetson Thor Distribution Across APAC

    Empowering a New Era of Physical AI and Robotics...

    Govt Sanctions 23 Chip Design Ventures Under DLI Scheme

    MeitY approved 23 chip design projects under its Design...

    Rare Earth Export Curbs Lifted by China: India’s Semiconductor and Electronics Sectors Poised to Benefit

    India’s electronics sector, one of the major achievements under...

    MeitY May Announce 2–3 Small Semiconductor Projects Soon

    The Ministry of Electronics and Information Technology (MeitY) has...

    Nuvoton Introduces Automotive-grade, Filter-Free 3W Class-D Audio Amplifier NAU83U25YG

    The New High-Efficiency Audio Solution Ideal for Dashboard, eCall,...