HomeTechnologyArtificial IntelligenceMachine Learning Core Repository on GitHub, 4 Application Examples to Try Machine...

    Machine Learning Core Repository on GitHub, 4 Application Examples to Try Machine Learning in Sensors in Minutes

    ST published its machine learning core repository on GitHub, with examples and configuration files, to vastly improve the developers’ experience. Artificial intelligence is notoriously difficult because it relies on data science. Additionally, creating the right algorithm, such as a decision tree, and setting it up, can also be tricky.

    Unfortunately, all these issues tend to limit the number of engineers that can easily start working on machine learning applications. Hence, we published a repository on GitHub to solve this problem. The package includes subsets of data logs as well as applications and configuration examples for the LSM6DSOX, LSM6DSRX, ISM330DHCX, IIS2ICLX inertial sensors. It already served key ST customers that used it to develop their commercial solutions. We thus thought other members of our community could benefit from it.

    Another Way to Make Machine Learning More Accessible

    The sensors supported are unique because they all have a machine learning core that can run one or more decision trees in parallel. ST was the first to provide such a component and received awards for it. It remains unique because a machine learning core can provide decision-making capabilities at a fraction of a microcontroller’s power consumption. As a result, ST expanded its offering with new devices from 2019, such as the LSM6DSRX and ISM330DHCX. We also reduced the barrier to entry by releasing tools like Unico-GUI. The utility offers a graphical interface that helps with data collection and the machine learning core’s configuration. The GitHub repository is thus another initiative that aims to make machine learning more accessible. Anyone can simply follow the steps outlined in the software package and test applications in minutes.

    The Machine Learning Core Repository and Sport

    Gym Activity

    Setting a wristband in a gym
    Setting a wristband in a gym

    One application example present in the machine learning core repository is a gym activity recognition running on the LSM6DSOX. The program enables a wristband to automatically detect between bicep curls, lateral raises, squats, or resting position. Users must, however, tell the system whether the wearable is on their right or left hand. The application in question relies on data collected by a wristband that used an LSM6DSOX inertial module. ST gathered data with the wearable on a right hand and then a left hand and now provides a subset of the “left hand” data in the repository. We are also offering two configuration files, one for each hand. Additionally, developers will find examples to help them design a similar algorithm and study the filters we applied to the accelerometer’s signal.

    Yoga Pose

    A woman performing a meditative pose
    A woman performing a meditative pose

    The other physical application is fascinating because it runs on a SensorTile.Box and can recognize 12 yoga positions as well as two non-yoga standing positions (standing still and standing in motion). It is possible to attach the device to the user’s left leg and use its powerful sensor to run a decision tree with 20 nodes. As the user holds a pose, the system can detect it in less than a second. The system can distinguish between a plank, the child’s pose, the downward-facing dog, or the meditation pose, among many others. The repository also offers the data logs from UNICO-GUI that helped create the decision tree classifier. The system determines a posture by tracking the mean values of the accelerometer on the X, Y, and Z axes.

    The Machine Learning Core Repository and Motion Detection

    Vehicle Stationary Detection

    The stationary detection algorithm determines whether a car is moving or not thanks to the more precise LSM6DSRX. The application uses data from the accelerometer and the gyroscope and works regardless of the orientation. The GitHub repository even offers a subset of the data logs collected to make this program. Additionally, we are providing configuration examples to help developers work on similar algorithms. The example helps beginners understand how a few filters can make a big difference to the input signal. The configuration also shows how we implemented a decision tree with 30 nodes. ST used a similar algorithm in its Baby Crying Detector. Indeed, a moving car implies the presence of a driver, which meant that even if a baby is crying, there’s no need to start an alarm because an adult is present in the car.

    Head Gesture

    The head gesture recognition application also uses an LSM6DSRX. The sensor, present in a headphone, can determine whether users are nodding, stationary, walking, and shaking or swinging their head. ST collected data for this algorithm with this particular inertial sensor, and a subset of the data logs are available. The application uses data from both the accelerometer and the gyroscope on the X, Y, and Z axes. However, not all data sources receive the same filters. For instance, the system only monitors the accelerometer on the Y-axis for a maximum threshold while and it looks for a minimum threshold on the X-axis of the same sensing element. It is thus a great example of the importance of signal processing in machine learning applications. Additionally, the decision tree is itself fairly straightforward with only seven nodes to detect five classes.

    For more information, visit blog.st.com

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Keysight Hosts AI Thought Leadership Conclave in Bengaluru

     Keysight Technologies, Inc. announced the AI Thought Leadership Conclave, a...

    Government approves 17 projects worth Rs. 7,172 crore under ECMS

    The Ministry of Electronics and IT announced for the...

    BD Soft strengthens cybersecurity offerings for BFSI and Fintech businesses with advanced solutions

    BD Software Distribution Pvt. Ltd. has expanded its Managed...

    Advancing Quantum Computing R&D through Simulation

    Courtesy: Synopsys Even as we push forward into new frontiers...

    Overcoming BEOL Patterning Challenges at the 3-NM Node

    Courtesy: Lam Research ● Controlling critical process parameters is key...

    Driving Innovation with High-Performance but Low-Power Multi-Core MCUs

    Courtesy: Renesas Over the last decade, the number of connected...

    Evolving from IoT to edge AI system development

    Courtesy: Avnet The advancement of machine learning (ML) along with...

    From the grid to the gate: Powering the third energy revolution

    Courtesy: Taylor, Robert, Mannesson, Henrik, Texas Instruments A significant change...

    Rohde & Schwarz India Pvt. Ltd. unveils R&D Centre in New Delhi, India

    Rohde & Schwarz announced the expansion of its Research...

    Rohde & Schwarz presents multi-purpose R&S NGT3600 high-precision dual-channel power supply

    Rohde & Schwarz showcases at productronica 2025 the R&S...