HomeElectronicsRenewable EnergyResearchers Make Breakthrough in Solar Cell Materials

    Researchers Make Breakthrough in Solar Cell Materials

    By using laser spectroscopy in a photophysics experiment, researchers have broken new ground that could result in faster and cheaper energy to power electronics. This novel approach, using solution-processed perovskite, is intended to revolutionize a variety of everyday objects such as solar cells, LEDs, photodetectors for smartphones, and computer chips. Solution-processed perovskite is the next-generation materials for solar cell panels on rooftops, X-ray detectors for medical diagnosis, and LEDs for daily-life lighting.

    “Perovskite materials are designed for optical applications such as solar cells and LEDs. It is important because it is much easier to synthesize compared to current silicon-based solar cells. This can be done by solution processing—whereas, in silicon, you have to have different methods that are more expensive and time-consuming.

    The goal of the research is to make materials that are more efficient, cheaper, and easier to produce.

    The unique method used by the team—employing ultrafast photocurrent spectroscopy—allowed for a much higher time resolution than most methods, in order to define the physics of the trapped carriers. Here, the effort is measured in picoseconds, which are one trillionth of a second.

    “We make devices using this (perovskite) material and we use a laser to shine a light on it and excite the electrons within the material. And then by using an external electric field, we generate a photocurrent. By measuring that photocurrent, we can actually tell people the characteristics of this material. In our case, we defined the trapped states, which are defects in the material that will affect the current that we get.”

    Once the physics are defined, researchers can identify the defects—which ultimately create inefficiency in the materials. When the defects are reduced or passivated, this can result in increased efficiency, which is critical for solar cells and other devices.

    As materials are created through solution processes such as spin coating or inkjet printing, the likelihood of introducing defects increases. These low-temperature processes are cheaper than ultra-high temperature methods that result in a pure material. But the tradeoff is more defects in the material. Striking a balance between the two techniques can mean higher-quality and more efficient devices at lower costs.

    The substrate samples were tested by shooting a laser at the material to determine how the signal propagates through it. Using a laser to illuminate the samples and collect the current made the work possible and differentiated it from other experiments that do not employ the use of an electric field.

    By analyzing that current, we are able to see how the electrons moved and how they come out of a defect. It is possible only because our technique involves ultrafast time scale and in-situ devices under an electrical field. Once the electron falls into the defect, those who experiment using other techniques cannot take that out. But we can take it out because we have the electric field. Electrons have charge under the electric field, and they can move from one place to another. We are able to analyze their transport from one point to another inside the material.”

    That transport and the effect of material defects upon it can impact the performance of those materials and the devices in which they are used. It is all part of the important discoveries that students are making under the guidance of their mentor, creating ripples that will lead to the next great breakthrough.

    ELE Times News
    ELE Times Newshttps://www.eletimes.ai/
    ELE Times provides extensive global coverage of Electronics, Technology, and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified, and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads, and market your products favorably.

    Related News

    Must Read

    The Era of Engineering Physical AI

    Courtesy: Synopsys Despite algorithmic wizardry and unprecedented scale, the engineering...

    Gartner Forecasts Having 116 Million EVs on the Road in 2026

    Gartner, Inc., a business and technology insights company predicts...

    Toradex Launches Two New Computer on Module Families for Ultra-Compact Industrial and IoT Applications

    Toradex has expanded its embedded computing portfolio with four...

    The Great Leap: How AI is Reshaping Cybersecurity from Pilot Projects to Predictive Defense

    Imagine your cybersecurity team as a group of highly-trained...

    Optimized analog front-end design for edge AI

    Courtesy: Avnet Key Takeaways: 01.   AI models see data differently: what...

    Introducing Wi-Fi 8: The Next Boost for the Wireless AI Edge

    Courtesy: Broadcom Wi-Fi 8 has officially arrived—and it marks a...

    Vehicle to Grid (V2G) Charging in EVs: Understanding the Basics

    Much of the research around emerging technologies in Electric...

    Asia-Pacific Takes the Lead in AI Adoption Across Manufacturing

    Courtesy: Rockwell Automation Manufacturing around the world has undergone a...