HomeTechnologyArtificial IntelligenceResearchers Publish Roadmap to Harness Data Science and Artificial Intelligence

    Researchers Publish Roadmap to Harness Data Science and Artificial Intelligence

    Since they came into use in 1938, electron microscopes have played a pivotal role in a host of scientific advances, including the discovery of new proteins and therapeutics and contributions made to the electronics revolution. But the field of electron microscopy must incorporate the latest advances in data science and artificial intelligence to realize its full potential in the years ahead, according to a global research team co-led by Mitra Taheri, professor of materials science and engineering at Johns Hopkins University’s Whiting School of Engineering.

    In a commentary in Nature Materials, Taheri and the team discuss a model for an open, highly integrated, and data-driven microscopy architecture needed to address future challenges in the field such as energy storage, quantum information science, and materials design. They recommend an approach that integrates artificial intelligence and machine learning into each step of the microscopy workflow, enabling experiments and discoveries not possible with today’s microscopy technology alone.

    “To fully harness the unprecedented volumes of data available today, we need to completely rethink how experimentation is conducted in microscopy,” said Taheri, who directs Johns Hopkins’ Materials Characterization and Processing Center. “We are rapidly approaching the point of data saturation. Not only do artificial intelligence and machine learning tools allow us to manage data flow, but they also enable more innovative microscopy solutions going forward.”

    In the piece, the authors discuss how today’s microscopes allow us to get a sneak peek at the world at an atomic level using electron beams and revealing how the locomotion and malformations of atomic particles can impact materials and chemical processes. Electron microscopy and improvements to instrument components such as electromagnetic lenses have brought the field a long way, and are enabling the extraction of deep, truly statistical information about very complex processes for the first time. While this is great news, the researchers say it brings into focus the limitations of microscopy in its current state. In terms of analyzing multiple representative samples and integrating large volumes of multidimensional data from high-speed detectors, traditional microscopy is somewhat limited, they contend.

    “The field as a whole has not yet adopted data science methods that have revolutionized other domains, such as single-particle cryptoanalysis and X-ray crystallography,” explains Steven Spurgeon, a materials scientist at Pacific Northwest National Laboratory and co-author of the commentary. “You’re drinking from a fire hose when the instrument takes 1,000 images a second.”

    Taheri says rethinking how microscopy experimentation is conducted and incorporating these revolutionary data science methods is the key to unlocking electron microscopy’s full power and will play a critical role in realizing the goals of the Materials Genome Initiative.

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Top 10 Reinforcement Learning Companies in India

    Reinforcement learning (RL), a subfield of machine learning in...

    Reinforcement Learning Definition, Types, Examples and Applications

    Reinforcement Learning (RL), unlike other machine learning (ML) paradigms,...

    Infineon drives industry transition to Post-Quantum Cryptography on PSOC Control microcontrollers

    Infineon Technologies AG announced that its microcontrollers (MCUs) in...

    Decision Tree Learning Definition, Types, Examples and Applications

    Decision Tree Learning is a type of supervised machine...

    Renesas Introduces Ultra-Low-Power RL78/L23 MCUs for Next-Generation Smart Home Appliances

    Ultra-low-power RL78/L23 MCUs with segment LCD displays & capacitive...

    STMicroelectronics Appoints MD India

    Anand Kumar is the Managing Director of STMicroelectronics (ST),...

    Top 10 Federated Learning Applications and Use Cases

    Nowadays, individuals own an increasing number of devices—such as...

    Top 10 Federated Learning Companies in India

    Federated learning is transforming AI’s potential in India by...