HomeTechnologyArtificial IntelligenceUsing AI and Old Reports to Understand New Medical Images

    Using AI and Old Reports to Understand New Medical Images

    Getting a quick and accurate reading of an X-ray or some other medical images can be vital to a patient’s health and might even save a life. Obtaining such an assessment depends on the availability of a skilled radiologist and, consequently, a rapid response is not always possible. For that reason, says Ruizhi “Ray” Liao, a postdoc and a recent PhD graduate at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), “we want to train machines that are capable of reproducing what radiologists do every day.” Liao writes with other researchers at MIT and Boston-area hospitals, that are being presented this fall at MICCAI 2021, an international conference on medical image computing.

    Although the idea of utilizing computers to interpret images is not new, the MIT-led group is drawing on an underused resource—the vast body of radiology reports that accompany medical images, written by radiologists in routine clinical practice—to improve the interpretive abilities of machine learning algorithms. The team is also utilizing a concept from information theory called mutual information—a statistical measure of the interdependence of two different variables—in order to boost the effectiveness of their approach.

    Here’s how it works: First, a neural network is trained to determine the extent of a disease, such as pulmonary edema, by being presented with numerous X-ray images of patients’ lungs, along with a doctor’s rating of the severity of each case. That information is encapsulated within a collection of numbers. A separate neural network does the same for text, representing its information in a different collection of numbers. A third neural network then integrates the information between images and text in a coordinated way that maximizes the mutual information between the two datasets. “When the mutual information between images and text is high, that means that images are highly predictive of the text and the text is highly predictive of the images,” explains MIT Professor Polina Golland, a principal investigator at CSAIL.

    Liao, Golland, and their colleagues have introduced another innovation that confers several advantages: Rather than working from entire images and radiology reports, they break the reports down to individual sentences and the portions of those images that the sentences pertain to. Doing things this way, Golland says, “estimates the severity of the disease more accurately than if you view the whole image and whole report. And because the model is examining smaller pieces of data, it can learn more readily and has more samples to train on.”

    While Liao finds the computer science aspects of this project fascinating, a primary motivation for him is “to develop technology that is clinically meaningful and applicable to the real world.”

    The model could have very broad applicability, according to Golland. “It could be used for any kind of imagery and associated text—inside or outside the medical realm. This general approach, moreover, could be applied beyond images and text, which is exciting to think about.”

    Devendra Kumar
    Devendra Kumarhttps://www.eletimes.ai
    Devendra Kumar is the editor in chief of ELE Times. With over 25 years experience covering the electronics and application industry, Devendra has at various times focused on electronics, covering the global electronics industry with a particular focus on India His beat has always been emerging technologies and business models that enable a new generation of core electronics. In addition, he covers automotive, Internet of Things, and wireless/networking for ELE Times.

    Related News

    Must Read

    Tobii and STMicroelectronics enter mass production of breakthrough interior sensing technology

    Tobii and STMicroelectronics announced the beginning of mass production...

    Rohde & Schwarz unveils compact MXO 3 oscilloscopes with 4 and 8 channels

    Rohde & Schwarz expands its next-generation MXO oscilloscope portfolio...

    TI’s new power-management solutions enable scalable AI infrastructures

    Texas Instruments (TI) debuted new design resources and power-management...

    ESA awards Rohde & Schwarz for contributions to 30 years European Satellite Navigation

    The event brought together institutional and industrial partners, ESA...

    STMicroelectronics joins FiRa board, strengthening commitment to UWB ecosystem and automotive Digital Key adoption

    STMicroelectronics, a global semiconductor leader serving customers across the...

    STARLight Project chosen as the European consortium to lead in next-gen silicon photonics on 300 mm wafers

    The STARLight project is bringing together a consortium of leading...

    KYOCERA AVX RELEASES NEW KGP SERIES STACKED CAPACITORS

    KYOCERA AVX released the new KGP Series commercial-grade stacked...

    Microchip Unveils First 3 nm PCIe Gen 6 Switch to Power Modern AI Infrastructure

    Switchtec Gen 6 PCIe Fanout Switches deliver extra bandwidth,...

    Nuvoton Launches Arbel NPCM8mnx System-in-Package (SiP) for AI Servers and Datacenter Infrastructure

    Breakthrough BMC Innovation Powers Secure, Scalable, and Open Compute...