HomeNewsIndia NewsEEMBC Seeks Participants for Machine Learning Working Group

    EEMBC Seeks Participants for Machine Learning Working Group

    EEMBC, an industry consortium that develops benchmarks for embedded software and hardware, today announced that the organization is seeking participants for a new Machine Learning working group. Group members will collaborate to develop EEMBC’s Machine Learning Benchmark Suite, which will identify the performance potential and power efficiency of processor cores used for accelerating machine learning jobs on clients such as virtual assistants, smartphones, and IoT devices.

    “Until now, benchmarks have focused on training processes in the cloud, neglecting performance and power consumption measurements for cores running learning inference models on IoT edge devices, such as those used by Amazon Alexa, Apple’s Siri, and Google Cortana,” said Peter Torelli, EEMBC president and CTO. “Participants in our Machine Learning working group will not only help usher in this new and much-needed area of measurement, but also ensure meaningful and fair representation for their companies’ products.”

    Chaired by Intel’s Ramesh Jaladi, the Machine Learning working group is currently defining the first proofs of concept. Participants include Analog Devices, ARM, AuZone, Flex, Green Hills Software, Intel, Nvidia, NXP Semiconductors, Samsung, STMicroelectronics, Synopsys, and Texas Instruments.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    AI-Driven 6G: Smarter Design, Faster Validation

    Courtesy: Keysight Technologies Key takeaways: Telecom companies are hoping...

    Scaling up the Smart Manufacturing Mountain

    Courtesy: Rockwell Automation A step-by-step roadmap to adopting smart manufacturing...

    STMicroelectronics’ new GaN ICs platform for motion control boosts appliance energy ratings

    STMicroelectronics unveiled new smart power components that let home...

    Keysight Hosts AI Thought Leadership Conclave in Bengaluru

     Keysight Technologies, Inc. announced the AI Thought Leadership Conclave, a...

    Government approves 17 projects worth Rs. 7,172 crore under ECMS

    The Ministry of Electronics and IT announced for the...

    BD Soft strengthens cybersecurity offerings for BFSI and Fintech businesses with advanced solutions

    BD Software Distribution Pvt. Ltd. has expanded its Managed...

    Advancing Quantum Computing R&D through Simulation

    Courtesy: Synopsys Even as we push forward into new frontiers...

    Overcoming BEOL Patterning Challenges at the 3-NM Node

    Courtesy: Lam Research ● Controlling critical process parameters is key...

    Driving Innovation with High-Performance but Low-Power Multi-Core MCUs

    Courtesy: Renesas Over the last decade, the number of connected...