HomeTechnologyAutomation and RoboticsA Universal Approach to Tailoring Soft Robots

    A Universal Approach to Tailoring Soft Robots

    By combining two distinct approaches into an integrated workflow, Singapore University of Technology and Design (SUTD) researchers have developed a novel automated process for designing and fabricating customized soft robots. Their method can be applied to other kinds of soft robots—allowing their mechanical properties to be tailored in an accessible manner.

    Though robots are often depicted as stiff, metallic structures, an emerging class of pliable machines known as soft robots is rapidly gaining traction. Inspired by the flexible forms of living organisms, soft robots have wide applications in sensing, movement, object grasping and manipulation, among others. Yet, such robots are still mostly fabricated through manual casting techniques—limiting the complexity and geometries that can be achieved.

    “Most fabrication approaches are predominantly manual due to a lack of standard tools,” said SUTD Assistant Professor, who led the study. “But 3D printing or additive manufacturing is slowly coming into play as it facilitates repeatability and allows more complex designs—improving quality and performance.”

    According to a researcher, embedded 3D printing—wherein various material inks are extruded in a supportive matrix—is especially suited for fabricating soft robots made of multiple materials or composites. However, to ensure that these robots are optimally designed, the team turned to topology optimisation (TO), where mathematical models are employed to design bespoke structures within a set of constraints.

    By automating these two key steps in a single framework, the researchers hoped to develop an integrated workflow for creating customized soft robots and minimize potential errors along the way. For the study, the group used a swimming autonomous robot inspired by batoids. The workflow starts by defining the robot’s fin geometry, after which TO is used to generate the desired structure with desired properties within prescribed material and motion constraints. The optimized design is then transformed into a code that is read by the team’s custom-built 3D printers, which in turn fabricate the robot.

    The batoid-inspired soft robots were designed to survive the marine environment’s harsh conditions and the approach focused on tailoring their fin composition and assessing how these changes could impact the fabricated robot’s swimming performance.

    Specifically, three types of fins were created—with two fins respectively made of soft and stiff materials as well as a third fin designed through TO combining the two materials. Unlike the first two fins, which were fabricated using traditional methods, the third composite fin was made following the integrated workflow.

    Incredibly, the soft robot with the optimized composite fins was 50 percent faster than its counterpart with the traditionally casted soft fin, with a speed slightly higher than the robot with the hard fin. The same prototype with the composite fin also turned roughly 30 percent faster compared to the soft fin and had the smallest turning radius among the three robots—making it better at maneuvering through water.

    Having successfully demonstrated the effectiveness of their approach, Researcher noted that their workflow for fabricating optimized, multi-material soft robots can be universally applied to design other soft robots.

    “For example, if we’re building a sensor, our objective in TO could be to tailor the electrical conductivity of certain portions of the structure,” Researcher said. “Customizing optical, thermal, electrical, as well as other physico-chemical properties would also be interesting for other applications.”

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Related News

    Must Read

    KYOCERA AVX RELEASES NEW KGP SERIES STACKED CAPACITORS

    KYOCERA AVX released the new KGP Series commercial-grade stacked...

    Microchip Unveils First 3 nm PCIe Gen 6 Switch to Power Modern AI Infrastructure

    Switchtec Gen 6 PCIe Fanout Switches deliver extra bandwidth,...

    Nuvoton Launches Arbel NPCM8mnx System-in-Package (SiP) for AI Servers and Datacenter Infrastructure

    Breakthrough BMC Innovation Powers Secure, Scalable, and Open Compute...

    STMicroelectronics joins FiRa board, strengthening commitment to UWB ecosystem and automotive Digital Key adoption

    STMicroelectronics has announced that Rias Al-Kadi, General Manager of the...

    NEPCON ASIA 2025: Showcasing the Future of Smart Electronics Manufacturing

    NEPCON ASIA 2025, taking place from October 28 to...

    Renesas Expands Sensing Portfolio with 3 Magnet-Free IPS ICs & Web-Based Design Tool

    New Simulation & Optimization Platform Enables Custom Coil Designs...

    IEEE IEDM, 2025 Showcases Latest Technologies in Microelectronics, Themed “100 Years of FETs”

    The IEEE International Electron Devices Meeting (IEDM) is considered...

    OMNIVISION Introduces Next-Generation 8-MP Image Sensor For Exterior Automotive Cameras

    OMNIVISION announced its latest-generation automotive image sensor: the OX08D20, 8-megapixel (MP) CMOS...

    Vishay Intertechnology Expands Inductor Portfolio with 2000+ New SKUs and Increased Capacity

    Vishay Intertechnology, Inc. announced that it has successfully delivered...