HomeTechnologyHigh Performance ComputingXilinx Unveils Revolutionary Adaptable Computing Product Category

    Xilinx Unveils Revolutionary Adaptable Computing Product Category

    Xilinx, Inc. announced a new breakthrough product category called adaptive compute acceleration platform (ACAP) that goes far beyond the capabilities of an FPGA. An ACAP is a highly integrated multi-core heterogeneous compute platform that can be changed at the hardware level to adapt to the needs of a wide range of applications and workloads. An ACAP’s adaptability, which can be done dynamically during operation, delivers levels of performance and performance per-watt that is unmatched by CPUs or GPUs.

    An ACAP is ideally suited to accelerate a broad set of applications in the emerging era of big data and artificial intelligence. These include: video transcoding, database, data compression, search, AI inference, genomics, machine vision, computational storage and network acceleration. Software and hardware developers will be able to design ACAP-based products for end point, edge and cloud applications. The first ACAP product family, codenamed “Everest,” will be developed in TSMC 7nm process technology and will tape out later this year.

    “This is a major technology disruption for the industry and our most significant engineering accomplishment since the invention of the FPGA,” says Victor Peng, president and CEO of Xilinx. “This revolutionary new architecture is part of a broader strategy that moves the company beyond FPGAs and supporting only hardware developers. The adoption of ACAP products in the data center, as well as in our broad markets, will accelerate the pervasive use of adaptive computing, making the intelligent, connected, and adaptable world a reality sooner.”

    ACAP TECHNICAL DETAILS

    An ACAP has – at its core – a new generation of FPGA fabric with distributed memory and hardware-programmable DSP blocks, a multicore SoC, and one or more software programmable, yet hardware adaptable, compute engines, all connected through a network on chip (NoC). An ACAP also has highly integrated programmable I/O functionality, ranging from integrated hardware programmable memory controllers, advanced SerDes technology and leading edge RF-ADC/DACs, to integrated High Bandwidth Memory (HBM) depending on the device variant.

    Software developers will be able to target ACAP-based systems using tools like C/C++, OpenCL and Python. An ACAP can also be programmable at the RTL level using FPGA tools.

    “This is what the future of computing looks like,” says Patrick Moorhead, founder, Moor Insights & Strategy. “We are talking about the ability to do genomic sequencing in a matter of a couple of minutes, versus a couple of days. We are talking about data centers being able to program their servers to change workloads depending upon compute demands, like video transcoding during the day and then image recognition at night. This is significant.”

    ACAP has been under development for four years at an accumulated R&D investment of over one billion dollars (USD). There are currently more than 1,500 hardware and software engineers at Xilinx designing “ACAP and Everest.”  Software tools have been delivered to key customers. “Everest” will tape out in 2018 with customer shipments in 2019.

    “EVEREST” PERFORMANCE IMPROVEMENTS

    “Everest” is expected to achieve 20x performance improvement on deep neural networks compared to today’s latest 16nm Virtex VU9P FPGA. “Everest”-based 5G remote radio heads will have 4x the bandwidth versus the latest 16nm-based radios. A wide variety of applications across multiple markets like automotive; industrial, scientific and medical; aerospace and defense; test, measurement and emulation; audio/video and broadcast; and the consumer markets will see a significant performance increase and greater power efficiency.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    The Invisible Hand: How Smart Technology Reshaped the RF and Microwave Development Track

    The world is not just connected; it is smart,...

    Nuvoton Technology Launches NuMicro M5531 Series Microcontrollers

    Nuvoton Technology announced the launch of NuMicro M5531 series...

    STMicroelectronics empowers data-hungry industrial transformation with unique dual-range motion sensor

    STMicroelectronics has revealed the ISM6HG256X, a tiny three-in-one motion...

    How AI Is Powering the Road to Level 4 Autonomous Driving

    Courtesy: Nvidia When the Society of Automotive Engineers established its...

    Revolutionizing System Design with AI-Powered Real-Time Simulation

    Courtesy: Cadence The rising demand for AI infrastructure is driving...

    Microchip Technology Expands its India Footprint with a New Office Facility in Bengaluru

    Microchip Technology has expanded its India footprint with the...

    How Quantum Sensors and Post-Moore Measurement Tech Are Rewriting Reality

    When the chip industry stopped promising effortless doublings every...

    Rohde & Schwarz Mobile Test Summit 2025 on the future of wireless communications

    Rohde & Schwarz has announced that this year’s Mobile...