HomeElectronicsRenewable EnergyField Study Shows Icing Can Cost Wind Turbines Up to 80% of...

    Field Study Shows Icing Can Cost Wind Turbines Up to 80% of Power Production

    Wind turbine blades spinning through cold, wet conditions can collect ice nearly a foot thick on the yard-wide tips of their blades. That disrupts blade aerodynamics. That disrupts the balance of the entire turbine. And that can disrupt energy production by up to 80 percent, according to a recently published field study led by Hui Hu, Iowa State University’s Martin C. Jischke Professor in Aerospace Engineering and director of the university’s Aircraft Icing Physics and Anti-/De-icing Technology Laboratory.

    Hu has been doing laboratory studies of turbine-blade icing for about 10 years, including performing experiments in the unique ISU Icing Research Tunnel. Much of that work has been supported by grants from the Iowa Energy Center and the National Science Foundation.

    “But we always have questions about whether what we do in the lab represents what happens in the field,” Hu said. “What happens over the blade surfaces of large, utility-scale wind turbines?”

    We all know about one thing that recently happened in the field. Wind power and other energy sources froze and failed in Texas during last month’s winter storm.

    Hu wanted to quantify what happens on wind farms during winter weather and so several years ago began organizing a field study. But that was more complicated than he expected. Even in Iowa, where some 5,100 wind turbines produce more than 40% of the state’s electricity (according to the U.S. Energy Information Association), he wasn’t given access to turbines. Energy companies usually don’t want their turbine performance data to go public.

    So Hu—who had made connections with researchers at the School of Renewable Energy at North China Electric Power University in Beijing as part of an International Research Experiences for Students program funded by the National Science Foundation—asked if Chinese wind farms would cooperate.

    Operators of a 34-turbine, 50-megawatt wind farm on a mountain ridgetop in eastern China agreed to a field study in January 2019. Hu said most of the turbines generate 1.5 megawatts of electricity and are very similar to the utility-scale turbines that operate in the United States.

    Because the wind farm the researchers studied is not far from the East China Sea, Hu said the wind turbines there face icing conditions more like those in Texas than in Iowa. Iowa wind farms are exposed to colder, drier winter conditions; when winter cold drops to Texas, wind farms there are exposed to more moisture because of the nearby Gulf of Mexico.

    As part of their fieldwork, the researchers used drones to take photos of 50-meter-long turbine blades after exposure to up to 30 hours of icy winter conditions, including freezing rain, freezing drizzle, wet snow, and freezing fog.

    The photographs allowed detailed measurement and analyses of how and where ice collected on the turbine blades. Hu said the photos also allowed researchers to compare natural icing to laboratory icing and largely validated their experimental findings, theories, and predictions.

    The photos showed, “While ice accreted over entire blade spans, more ice was found to accrete on outboard blades with the ice thickness reaching up to 0.3 meters (nearly 1 foot) near the blade tips,” the researchers wrote in a paper recently published online by the journal Renewable Energy.

    The researchers used the turbines’ built-in control and data-acquisition systems to compare operation status and power production with ice on the blades against more typical, ice-free conditions.

    “Despite the high wind, iced wind turbines were found to rotate much slower and even shut down frequently during the icing event, with the icing-induced power loss being up to 80%,” the researchers wrote.

    That means Hu will continue to work on another area of wind-turbine research—finding effective ways to de-ice the blades so they keep spinning, and the electricity keeps flowing, all winter long.

    ELE Times Bureau
    ELE Times Bureauhttps://www.eletimes.ai/
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Related News

    Must Read

    Microchip Introduces 600V Gate Driver Family for High-Voltage Power Management Applications

    To meet the demanding needs of high-voltage power management...

    From Power Grids to EV Motors: Industry Flags Key Budget 2026 Priorities for India’s Next Growth Phase

    As India approaches Union Budget 2026–27, multiple industrial sectors—from...

    India’s Next Big Concern in the AI Era: Cybersecurity for Budget 2026

    Artificial Intelligence (AI), like any other technology, comes with...

    Anritsu Unveils Visionary 6G Solutions at MWC 2026

    ANRITSU CORPORATION showcases next-generation wireless solutions at MWC 2026...

    CEA-Leti Advances Silicon-Integrated Quantum Cascade Lasers for Mid-Infrared Photonics

    CEA-Leti presented new research at SPIE Photonics West highlighting major...

    How A Real-World Problem Turned Into Research Impact at IIIT-H

    The idea for a low-cost UPS monitoring system at...

    Microchip Expands PolarFire FPGA Smart Embedded Video Ecosystem providing enhanced video connectivity

    Microchip Technology has expanded its PolarFire FPGA smart embedded video ecosystem...

    element14 and Fulham announce global distribution partnership

    element14 has formed a new global distribution partnership with...