HomeTechnologyArtificial IntelligenceHologram Reconstruction with Deep Neural Network

    Hologram Reconstruction with Deep Neural Network

    Deep learning has achieved benchmark results for various imaging tasks, including holographic microscopy, where an essential step is to recover the phase information of samples using intensity-only measurements. By training on well-designed datasets, deep neural networks have proven to outperform classical phase retrieval and hologram reconstruction algorithms in terms of accuracy and computational efficiency. However, model generalization, which refers to extending the neural networks’ capabilities to new types of samples never seen during the training, remains a challenge for existing deep learning models.

    UCLA researchers have recently created a novel neural network architecture, termed Fourier Imager Network (FIN), which demonstrated unprecedented generalization to unseen sample types, also achieving superior computational speed in phase retrieval and holographic image reconstruction tasks. In this new approach, they introduced spatial Fourier transform modules that enable the neural network to take advantage of the spatial frequencies of the whole image. UCLA researchers trained their FIN model on human lung tissue samples and demonstrated its superior generalization by reconstructing the holograms of human prostate and salivary gland tissue sections, and Pap smear samples, which were never seen in the training phase.

    The new deep learning-based framework is reported to achieve higher image reconstruction accuracy compared to the classical hologram reconstruction algorithms and the state-of-the-art deep learning models, while shortening the reconstruction time by ~50 times. This new deep learning framework can be broadly used to create highly generalizable neural networks for various microscopic imaging and computer vision tasks.

    This research was led by Dr. Aydogan Ozcan, Chancellor’s Professor and Volgenau Chair for Engineering Innovation at UCLA and HHMI Professor with the Howard Hughes Medical Institute. The other researchers of this work include Hanlong Chen, Luzhe Huang, and Tairan Liu, all from the Electrical and Computer Engineering department at UCLA. Prof. Ozcan also has UCLA faculty appointments in the bioengineering and surgery departments and is an associate director of the California NanoSystems Institute.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Renesas Expands Sensing Portfolio with 3 Magnet-Free IPS ICs & Web-Based Design Tool

    New Simulation & Optimization Platform Enables Custom Coil Designs...

    IEEE IEDM, 2025 Showcases Latest Technologies in Microelectronics, Themed “100 Years of FETs”

    The IEEE International Electron Devices Meeting (IEDM) is considered...

    OMNIVISION Introduces Next-Generation 8-MP Image Sensor For Exterior Automotive Cameras

    OMNIVISION announced its latest-generation automotive image sensor: the OX08D20, 8-megapixel (MP) CMOS...

    Vishay Intertechnology Expands Inductor Portfolio with 2000+ New SKUs and Increased Capacity

    Vishay Intertechnology, Inc. announced that it has successfully delivered...

    Keysight to Demonstrate AI-enabled 6G and Wireless Technologies at India Mobile Congress 2025

    Keysight Technologies will demonstrate 20 advanced AI-enabled 6G and...

    Ashwini Vaishnaw Approves NaMo Semiconductor Lab at IIT Bhubaneswar

    As part of a big push towards the development...

    Electric Mobility Drives India’s Power Electronics Expansion

    India is on the verge of an electric revolution....

    India Targets 40% Local Value Addition in Electronics with New Component Scheme

    India's electronics manufacturing landscape is set for a major...