HomeNewsIndia NewsLow-Power Microcontrollers Extend Battery Life for Wearables and Other Compact Devices

    Low-Power Microcontrollers Extend Battery Life for Wearables and Other Compact Devices

    Designers of internet of things (IoT) sensors, environmental sensors, smartwatches, medical/preventive health wearables, and other size-constrained devices can now increase battery life and functionality using the ultra-low power MAX32660 and MAX32652 microcontrollers from Maxim Integrated Products, Inc. These microcontrollers (MCUs) are based on the Arm Cortex-M4 with FPU processor and provide designers the means to develop advanced applications under restrictive power constraints. Maxim’s family of DARWIN MCUs combine our wearable-grade power technology with the biggest embedded memories in their class and some of the most advanced embedded security in the world.

    MAX32660: Powerful processing in the tiniest form factor

    Memory, size, power consumption, and processing power are critical features for engineers designing more complex algorithms for smarter IoT applications. Existing solutions today offer two extremes – they either have decent power consumption but limited processing and memory capabilities, or they have higher power consumption with more powerful processors and more memory. The MAX32660 offers designers a sweet spot, giving them access to enough memory to run some advanced algorithms and manage sensors (256KB flash and 96KB SRAM). They also offer excellent power performance (down to 50uW/MHz), impressively small size (1.6mm x 1.6mm in WLP package), and a cost-effective price point. Engineers can now build more intelligent sensors and systems that are smaller and lower in cost, while also providing a longer battery life.

    MAX32652: Low power with scalable memory

    As IoT devices become more intelligent, they start requiring more memory and additional embedded processors which can each be very expensive and power hungry. The MAX32652 offers an alternative for designers who can benefit from the low power consumption of an embedded microcontroller with the capabilities of a higher powered applications processor. With 3MB flash and 1MB SRAM integrated on-chip and running up to 120 MHz, the MAX32652 offers a highly-integrated solution for IoT devices that strive to do more processing and provide more intelligence. Integrated high-speed peripherals such as high-speed USB 2.0, secure digital (SD) card controller, a thin-film transistor (TFT) display, and a complete security engine position the MAX32652 as the low-power brain for advanced IoT devices. With the added capability to run from external memories over HyperBus or XcellaBus, the MAX32652 can be designed to do even more tomorrow, providing designers a future-proof memory architecture and anticipating the increasing demands of smart devices.

    Key Advantages
    • Ultra-low power: Lowest power active-mode with advanced power management features; low power SRAM retention modes to extend battery life
    • Highly integrated: Integration with other high-speed peripherals including SD card controllers, high-speed USB 2.0, TFT display, and external memory
    • Secure: Leverages Maxim’s best-in-class security toolbox to help create secure sensors for IoT devices

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Related News

    Must Read

    Nuvoton Releases High-Power Ultraviolet Laser Diode (379 nm, 1.0 W)

    Nuvoton Technology announced the start of mass production of...

    SST & UMC Release 28nm SuperFlash Gen 4 for Next-Gen Automotive Controllers

    Silicon Storage Technology (SST), a subsidiary of Microchip Technology...

    Global AI Spending to Reach $2.5 Trillion in 2026, Predicts Gartner

    Gartner, a business and technology insights company forcasts the...

    Industry 5.0 in Practice: Collaborative, Connected, and Conscious Manufacturing

    As the world transitions towards Industry 5.0, the notion...

    AI-Enabled Autonomous Testing for Mission-Critical Electronics

    The rise of Artificial Intelligence (AI) and Machine Learning...

    Shifting from preventive maintenance to predictive maintenance

    Courtesy: RoHM In the manufacturing industry, equipment maintenance has traditionally...

    How Can the High Voltage Intelligent Battery Shunt Reference Design Benefit You?

    Courtesy: Element 14 Introduction Accurate current measurement is a critical aspect...

    The Move to 48 Volts in Transportation

    Courtesy: Avnet Key Takeaways: ●        48V systems are being adopted in...