HomeLatest ProductsSTMicroelectronics extends STM32Cube.AI Development Tool with Support for Deeply Quantized Neural Networks

    STMicroelectronics extends STM32Cube.AI Development Tool with Support for Deeply Quantized Neural Networks

    STMicroelectronics has released STM32Cube.AI version 7.2.0, the first artificial intelligence (AI) development tool by an MCU (microcontroller) vendor to support ultra-efficient deeply quantized neural networks.

    STM32Cube.AI converts pre-trained neural networks into optimized C code for STM32 microcontrollers (MCUs). It is an essential tool for developing cutting-edge AI solutions that make the most of the constrained memory sizes and computing power of embedded products. Moving AI to the edge, away from the cloud, delivers substantial advantages to the application. These include privacy by design, deterministic and real-time response, greater reliability, and lower power consumption. It also helps optimize cloud usage.

    Now, with support for deep quantization input formats like qKeras or Larq, developers can even further reduce network size, memory footprint, and latency. These benefits unleash more possibilities from AI at the edge, including frugal and cost-sensitive applications. Developers can thus create edge devices, such as self-powered IoT endpoints that deliver advanced functionality and performance with longer battery runtime. ST’s STM32 family provides many suitable hardware platforms. The portfolio extends from ultra-low-power Arm Cortex-M0 MCUs to high-performing devices leveraging Cortex-M7, -M33, and Cortex-A7 cores.

    STM32Cube.AI version 7.2.0 also adds support for TensorFlow 2.9 models, kernel performance improvements, new scikit-learn machine learning algorithms, and new Open Neural Network eXchange (ONNX) operators.

    For more information about STM32Cube.AI v7.2.0 and the free download, please visit www.st.com

    ELE Times News
    ELE Times Newshttps://www.eletimes.ai/
    ELE Times provides extensive global coverage of Electronics, Technology, and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified, and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads, and market your products favorably.

    Related News

    Must Read

    Top 10 Reinforcement Learning Companies in India

    Reinforcement learning (RL), a subfield of machine learning in...

    Reinforcement Learning Definition, Types, Examples and Applications

    Reinforcement Learning (RL), unlike other machine learning (ML) paradigms,...

    Infineon drives industry transition to Post-Quantum Cryptography on PSOC Control microcontrollers

    Infineon Technologies AG announced that its microcontrollers (MCUs) in...

    Decision Tree Learning Definition, Types, Examples and Applications

    Decision Tree Learning is a type of supervised machine...

    Renesas Introduces Ultra-Low-Power RL78/L23 MCUs for Next-Generation Smart Home Appliances

    Ultra-low-power RL78/L23 MCUs with segment LCD displays & capacitive...

    STMicroelectronics Appoints MD India

    Anand Kumar is the Managing Director of STMicroelectronics (ST),...

    Top 10 Federated Learning Applications and Use Cases

    Nowadays, individuals own an increasing number of devices—such as...

    Top 10 Federated Learning Companies in India

    Federated learning is transforming AI’s potential in India by...