HomeElectronicsBattery and Energy StorageMaking Batteries Live Longer with Ultrathin Lithium

    Making Batteries Live Longer with Ultrathin Lithium

    Our lives today are governed by electronics in all shapes and forms. Electronics, in turn, are governed by their batteries. However, the traditional lithium-ion batteries (LIBs), that are widely used in electronic devices, are falling out of favor because researchers are beginning to view lithium metal batteries (LMBs) as a superior alternative due to their remarkably high energy density that exceeds LIBs by an order of magnitude. The key difference lies in the choice of anode material: LIBs use graphite, whereas LMBs use lithium metal.

    Such a choice, however, comes with its own challenges. Among the most prominent ones is the formation of needle-like structures on the lithium anode surface during cycling called ‘dendrites’ that tend to pierce the barrier between the anode and cathode, causing short-circuit and, consequently, safety issues. “Li dendrite formation is strongly dependent on the surface nature of lithium anodes. A crucial strategy for LMBs, therefore, is to build an efficient solid-electrolyte interface (SEI) at the lithium surface,” explains Prof. Yong Min Lee from Daegu Gyeongbuk Institute of Science and Technology (DGIST), Korea, who specializes in battery design.

    Accordingly, researchers have explored a variety of strategies, from 2D interfacial engineering to 3D lithium anode architecture. In each case, solving one problem has merely given way to another. However, a new approach based on lithium metal powder (LMP) composite electrodes promises to stand out. The appeal of LMP lies in their spherical shape, which results in higher surface area, and ease of thickness tunability, allowing for wider and thinner electrodes. However, problems with LMP use still exist, such as the morphological failure caused by the inherent nature of their uneven surface.

    Now, in a new study published in Advanced Energy Materials, Dr. Lee, along with researchers from Korea, adopted a novel approach in which they pre-planted LiNO3 to the LMP itself during the electrode fabrication process, allowing them to fabricate ~150-mm-wide and 20-μm-thick electrodes, which showed a coulombic efficiency of 96%.

    The addition of LiNO3 to LMP accomplished two things: it induced a uniform N-rich SEI on the LMP surface and led to its sustained stabilization over prolonged cycling as LiNO3 was steadily released into the electrolyte. In fact, LMBs with LiNO3 pre-planted LMP (LN-LMP) demonstrated an outstanding cycling performance, with 87% capacity retention over 450 cycles, outperforming even cells with LiNO3-added electrolytes.

    Prof. Lee is thrilled by these findings and speaks of their practical ramifications. “We expect that pre-planting Li stabilized additives into the LMP electrode would be a stepping-stone towards the commercialization of large-scale Li-metal, Li-S, and Li-air batteries with high specific energy and long cycle life,” he says.

    With respect to batteries, it looks like lithium is not going out of fashion anytime soon.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Top 10 Decision Tree Learning Algorithms

    Decision tree learning algorithms are supervised machine learning algorithms...

    Building the Smallest: Magnetic Fields Power Microassembly

    As technology around us enters unconventional areas, such as...

    TI unveils the industry’s most sensitive in-plane Hall-effect switch, enabling lower design costs

    In-plane Hall-effect switch from TI can replace incumbent position...

    ASDC Conclave 2025: Accelerating Tech-Driven Skilling for Future Mobility

    Automotive Skills Development Council (ASDC) hosted its 14th Annual...

    Top 10 Reinforcement Learning Algorithms

    Reinforcement Learning (RL) algorithms represent a class of machine...

    SDVs, ADAS, and Chip Supply Chains- What to Expect at the 3rd e-Mobility Conference

    As technology remains the perennial growth factor across all...

    Top 10 Decision Tree Learning Frameworks

    In machine learning, a decision tree learning framework is...

    Reinforcement Learning Architecture Definition, Types and Diagram

    Reinforcement Learning is a type of machine learning in...

    Electronics Sector Set for Breakthrough Growth as GST Rates Reduced

    In a landmark reform, the Government of India has...