HomeNewsIndia NewsRare element to provide better material for high-speed electronics

    Rare element to provide better material for high-speed electronics

    Purdue researchers have discovered a new two-dimensional material, derived from the rare element tellurium, to make transistors that carry a current better throughout a computer chip.

    The discovery adds to a list of extremely thin, two-dimensional materials that engineers have tried to use for improving the operation speed of a chip’s transistors, which then allows information to be processed faster in electronic devices, such as phones and computers, and defense technologies like infrared sensors.

    Other two-dimensional materials, such as graphene, black phosphorus and silicene, have lacked either stability at room temperature or the feasible production approaches required to nanomanufacture effective transistors for higher speed devices.

    “All transistors need to send a large current, which translates to high-speed electronics,” said Peide Ye, Purdue’s Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering. “One-dimensional wires that currently make up transistors have very small cross sections. But a two-dimensional material, acting like a sheet, can send a current over a wider surface area.”

    ye-tellurium
    A small quantity of two-dimensional tellurene, derived from the rare element tellurium, can make computer chip transistors both more scalable and efficient.

    Tellurene, a two-dimensional film researchers found in the element tellurium, achieves a stable, sheet-like transistor structure with faster-moving “carriers” – meaning electrons and the holes they leave in their place. Despite tellurium’s rarity, the pros of tellurene would make transistors made from two-dimensional materials easier to produce on a larger scale. The researchers detail their findings in Nature Electronics.

     

    “Even though tellurium is not abundant on the Earth’s crust, we only need a little bit to be synthesized through a solution method. And within the same batch, we have a very high production yield of two-dimensional tellurene materials,” said Wenzhuo Wu, assistant professor in Purdue’s School of Industrial Engineering. “You simply scale up the container that holds the solution, so productivity is high.”

    Since electronics are typically in use at room temperature, naturally stable tellurene transistors at this temperature are more practical and cost-effective than other two-dimensional materials that have required a vacuum chamber or low operation temperature to achieve similar stability and performance.

    The larger crystal flakes of tellurene also mean less barriers between flakes to electron movement – an issue with the more numerous, smaller flakes of other two-dimensional materials.

    “High carrier mobility at room temperature means more practical applications,” Ye said. Faster-moving electrons and holes then lead to higher currents across a chip.

    The researchers anticipate that because tellurene can grow on its own without the help of any other substance, the material could possibly find use in other applications beyond computer chip transistors, such as flexible printed devices that convert mechanical vibrations or heat to electricity.

    “Tellurene is a multifunctional material, and Purdue is the birthplace for this new material,” Wu said. “In our opinion, this is much closer to the scalable production of two-dimensional materials with controlled properties for practical technologies.”

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Renesas Expands Sensing Portfolio with 3 Magnet-Free IPS ICs & Web-Based Design Tool

    New Simulation & Optimization Platform Enables Custom Coil Designs...

    IEEE IEDM, 2025 Showcases Latest Technologies in Microelectronics, Themed “100 Years of FETs”

    The IEEE International Electron Devices Meeting (IEDM) is considered...

    OMNIVISION Introduces Next-Generation 8-MP Image Sensor For Exterior Automotive Cameras

    OMNIVISION announced its latest-generation automotive image sensor: the OX08D20, 8-megapixel (MP) CMOS...

    Vishay Intertechnology Expands Inductor Portfolio with 2000+ New SKUs and Increased Capacity

    Vishay Intertechnology, Inc. announced that it has successfully delivered...

    Keysight to Demonstrate AI-enabled 6G and Wireless Technologies at India Mobile Congress 2025

    Keysight Technologies will demonstrate 20 advanced AI-enabled 6G and...

    Ashwini Vaishnaw Approves NaMo Semiconductor Lab at IIT Bhubaneswar

    As part of a big push towards the development...

    Electric Mobility Drives India’s Power Electronics Expansion

    India is on the verge of an electric revolution....

    India Targets 40% Local Value Addition in Electronics with New Component Scheme

    India's electronics manufacturing landscape is set for a major...