HomeNewsFAMES Pilot Line R&D Advances: 400°C CMOS Enables 3D Integration Goals

    FAMES Pilot Line R&D Advances: 400°C CMOS Enables 3D Integration Goals

    CEA-Leti, the coordinator of the FAMES Pilot line, has achieved a major milestone for next-generation chip stacking: fully functional 2.5 V SOI CMOS devices fabricated at 400°C. The devices match electrical performance of devices fabricated at standard thermal budget (>1000 °C), removing one of the last barriers to large-scale 3D sequential integration (3DSI) —a core objective of FAMES.

    Enabled by advanced CEA-Leti expertise in low-temperature processes (nanosecond laser annealing (NLA) and solid-phase epitaxy regrowth (SPER))this work offers true three-dimensional device stacking from the lab to fab. 3D sequential-integration interconnection density between tiers is the highest among 3D technologies, such as TSV and hybrid bonding. In this project, CEA-Leti demonstrated that Si CMOS is BEOL compatible, and thus can be stacked safely above BEOL, while transistor performance and maturity overtake largely the other technological options from the state-of-the-art, low-temperature solutions.

    The achievement, presented today in a paper at IEDM 2025, titled, “High Performance 2.5 V n&p 400 °C SOI MOSFETs: A Breakthrough for Versatile 3D Sequential Integration, is a key breakthrough for the FAMES Pilot Line, a European Union initiative launched in 2023 in response to the EU Chips Act strategy to strengthen sovereignty and competitiveness in semiconductor technologies. By combining 3D heterogeneous and sequential integration on FD-SOI platforms, the consortium aims to enable a new generation of More-Than-Moore devices and applications.

    Enabling New Chip Architectures

    “This breakthrough is a major milestone of the FAMES project as it enables innovative new chip architectures,” said Dominique Noguet, CEA-Leti vice president and coordinator of the FAMES Pilot Line. “Our low-temperature process could accelerate real-world demonstrations of multi-tier stacks combining advanced CMOS logic, with smart pixel or RF layers, to create new high-performance 3D chips.”

    Concept of 3-tier µLED GaN pixel allowing an emissive array with strong pitch reduction thanks to 3DSI in combination with 3D hybrid bonding technology. CEA-Leti’s 400 °C CMOS process enables such top-tier integration without exceeding the thermal limits of the active circuitry below.

    The team showed that SOI devices processed at 400 °C instead of the high temperature (>1000 °C) industry standard and high-temperature industrial reference, performed equivalent to high-temperature devices.

    “The 400 °C process enables 3D sequential stacking on any bottom tier,” Noguet said. “It’s a huge step forward because it’s far more mature—reliable and scalable—than current low-temperature solutions, such as polycrystalline films, oxide semiconductors or carbon nanotubes.”

    Protecting Circuitry on Bottom-Tier Layers

    CEA-Leti’s team demonstrated n- and p-type transistors matching the characteristics of conventional high-temperature CMOS devices, while staying within the ≤400 °C thermal budget required to preserve active circuitry in lower layers.

    The process relies on an optimized 400 °C LPCVD deposition for amorphous silicon followed by NLA in the melt regime for dopant activation and diffusion—producing polycrystalline, low-resistance gates with excellent interface quality. In additionNLA-SPER mastering enables dopant activation without diffusion leading to access resistance within specifications.

    “Our strength lies in mastering the cold process—especially nanosecond laser annealing—to achieve high-mobility, high-reliability CMOS at low temperature,” said Daphnée Bosch, lead author of the paper. “This laser expertise makes our approach unique.”

    Related News

    Must Read

    Microchip Introduces 600V Gate Driver Family for High-Voltage Power Management Applications

    To meet the demanding needs of high-voltage power management...

    From Power Grids to EV Motors: Industry Flags Key Budget 2026 Priorities for India’s Next Growth Phase

    As India approaches Union Budget 2026–27, multiple industrial sectors—from...

    India’s Next Big Concern in the AI Era: Cybersecurity for Budget 2026

    Artificial Intelligence (AI), like any other technology, comes with...

    Anritsu Unveils Visionary 6G Solutions at MWC 2026

    ANRITSU CORPORATION showcases next-generation wireless solutions at MWC 2026...

    CEA-Leti Advances Silicon-Integrated Quantum Cascade Lasers for Mid-Infrared Photonics

    CEA-Leti presented new research at SPIE Photonics West highlighting major...

    How A Real-World Problem Turned Into Research Impact at IIIT-H

    The idea for a low-cost UPS monitoring system at...

    Microchip Expands PolarFire FPGA Smart Embedded Video Ecosystem providing enhanced video connectivity

    Microchip Technology has expanded its PolarFire FPGA smart embedded video ecosystem...

    element14 and Fulham announce global distribution partnership

    element14 has formed a new global distribution partnership with...