HomeNewsIndia NewsMagnetoresistance ratio opens door to enhance highly sensitive magnetic field sensors

    Magnetoresistance ratio opens door to enhance highly sensitive magnetic field sensors

    Magnetic field sensors can enhance applications that require efficient electric energy management. Improving magnetic field sensors below the picoTesla range could enable a technique to measure brain activity at room temperature with millisecond resolution, called magnetic encephalography, without superconducting quantum interference device (SQUID) technology, which requires cryogenic temperatures to work.

    A group of researchers from Japan’s National Institute of Materials Science at the University of Tsukuba and LG Japan Lab Inc. explored enhancing the magnetoresistance ratio in a current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) device by using a half-metallic Heusler CoFeAl0.5Si0.5 (CFAS) alloy. The alloy has 100 percent spin-polarized conduction electrons, which enables very high spin-asymmetry of electron scattering and results in a large magnetoresistance ratio.

    Magnetoresistance, a variation of electrical resistance in response to an externally applied magnetic field, is important for all magnetic field sensor applications. To increase the sensitivity of magnetic field sensors, their magnetoresistance ratio (a value defined as electrical resistance change against magnetic field or magnetization) must first be increased.

    “We were able to demonstrate further enhancement of the magnetoresistance ratio by making multilayer stacks of CFAS and silver (Ag),” said Yuya Sakuraba, leader of the Magnet Materials Group at NIMS. “By precisely controlling the interfacial roughness of the multilayers, we obtained antiparallel interlayer exchange coupling between each of the CFAS layers, up to six, and achieved not only a high magnetoresistance ratio but also high linearity of resistance change against the magnetic field.”

    The researchers fabricated a fully expitaxial device on a single crystalline magnesium oxide (MgO) substrate. If a similar property can be obtained in a polycrystalline device, it may become a candidate for a new magnetic field sensor with a greater sensitivity than a conventional Hall sensor or tunnel magnetoresistance sensor.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Tech Diplomacy: India’s Strategic Power Play in the Global Arena

    In consideration of the escalating global tensions and the...

    Microchip and AVIVA Links Achieve ASA-ML Interoperability, Accelerating Open Standards for Automotive Connectivity

    The automotive industry is continuing its transition from proprietary...

    Microchip Adds Integrated Single-Chip Wireless Platform for Connectivity, Touch, Motor Control

    Bluetooth Low Energy, Thread, Matter and proprietary protocols come...

    Building Reliable 5G and 6G Networks Through Mobile Network Testing

    The development of communication networks has entered a revolutionary...

    Beyond the Screen: envisioning a giant leap forward for smartphones from physical objects to immersive experiences

    Author: STMicroelectronics Smartphones have become some of the most ubiquitous...

    Microchip’s SkyWire Tech Enables Nanosecond-Level Clock Sync Across Locations

    To protect critical infrastructure systems, SkyWire technology enables highly...

    Next Generation Hybrid Systems Transforming Vehicles

    The global automotive industry is undergoing a fundamental transformation...

    Tobii and STMicroelectronics enter mass production of breakthrough interior sensing technology

    Tobii and STMicroelectronics announced the beginning of mass production...