HomeElectronicsRenewable EnergyNew Research Shines Light on Perovskite Solar Cells Performance

    New Research Shines Light on Perovskite Solar Cells Performance

    The potential of a class of materials called perovskites, to enable solar cells to better absorb sunlight for energy production, is widely known. However, this potential has yet to be fully realized, particularly under real-world operating conditions.

    New research has revealed defects in a popular perovskite light absorber that impede solar cell performance. The researchers found a change in the nature and density of these ‘intragrain planar defects’ correlated with a change in solar cell performance.

    The discovery by an international team of researchers, could lead to improved solar cell technology and provide another step towards reducing the use of fossil fuels for energy.

    Perovskite light absorbers have the potential to improve the efficiency of established silicon solar cells by adding an additional layer that can absorb colors, or parts of the energy spectrum of sunlight, that current silicon solar cells cannot.

    The highest possible performance of silicon solar cells is around 32 percent of capacity. This means only about 32 percent of the energy available in sunlight can be captured by silicon solar cells.

    Placing such a perovskite solar cell on top of a silicon solar cell, known as a tandem solar cell, can effectively boost the overall performance of the stack up to roughly 42 percent.

    Since small changes to the perovskite composition can tune the absorption spectrum of perovskite solar cells relatively easily, it is possible to create a perovskite solar cell that absorbs the higher energy light but lets the lower energy light pass through.

    The research team used the imaging and diffraction protocol developed at the Monash Centre for Electron Microscopy (MCEM) to study the crystal structure of a range of perovskite solar cell materials in their pristine state, in the periodic crystal structure can have a strong influence on the material’s electronic properties.

    Being able to map the local crystal structure of a thin film of perovskite light absorber and correlate this with the overall solar cell device performance provides exciting new insights into how device performance can be improved.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    STMicroelectronics recognised as a Top 100 Global Innovator 2026

    Clarivate's list ranks the organisations leading the way...

    Aimtron Electronics acquires US-based ESDM and ODM company to expand global footprint

    Acquisition adds USD 17 million current revenue...

    Microchip Introduces 600V Gate Driver Family for High-Voltage Power Management Applications

    To meet the demanding needs of high-voltage power management...

    From Power Grids to EV Motors: Industry Flags Key Budget 2026 Priorities for India’s Next Growth Phase

    As India approaches Union Budget 2026–27, multiple industrial sectors—from...

    India’s Next Big Concern in the AI Era: Cybersecurity for Budget 2026

    Artificial Intelligence (AI), like any other technology, comes with...

    Anritsu Unveils Visionary 6G Solutions at MWC 2026

    ANRITSU CORPORATION showcases next-generation wireless solutions at MWC 2026...

    CEA-Leti Advances Silicon-Integrated Quantum Cascade Lasers for Mid-Infrared Photonics

    CEA-Leti presented new research at SPIE Photonics West highlighting major...

    How A Real-World Problem Turned Into Research Impact at IIIT-H

    The idea for a low-cost UPS monitoring system at...