HomeNewsIndia NewsLow light loss exhibited by Compact Optical Waveguides for use in Biosensors,...

    Low light loss exhibited by Compact Optical Waveguides for use in Biosensors, Wearable Displays

    Tiny, flexible waveguides, made in a clear silicone commonly used for biomedical applications, were created by a research team at École Fédérale de Lausanne (EPFL). To create the waveguides, the team used multiphoton laser direct writing, a microfabrication method in which a light-sensitive chemical is polymerized with a focused laser to create finely detailed 3D structures.

    The optical waveguides were fabricated in polydimethylsiloxane (PDMS). Phenylacetylene was used as the photosensitive monomer. Phenylacetylene has a higher refractive index once polymerized, compared to traditional materials. The researchers surmised that the refractive index (RI) of the phenylacetylene would be markedly different from the RI of the surrounding PDMS. This would help ensure that the waveguides, although tiny, would be able to confine light efficiently.

    The researchers soaked the PDMS in phenylacetylene, then used an ultrafast laser to induce multiphoton absorption. Multiphoton laser direct writing produces finer structures than one-photon processes because the volume of polymerization at each writing spot is smaller. Multiphoton laser direct writing allowed the researchers to directly initiate phenylacetylene polymerization without a photoinitiator. The researchers caused any nonpolymerized phenylacetylene to evaporate by heating the PDMS.

    “By not using a photoinitiator, we simplified the fabrication process and also enhanced the compatibility of the final device with living tissue,” said researcher Ye Pu.

    Waveguides smaller than 1 μm could be possible if the setup was optimized, said the researchers, who are now working to improve the yield of the fabrication process by developing a control system that will help prevent material damage during laser writing. They also plan to create an array of narrow waveguides in PDMS that could be used to construct a flexible endoscope with a diameter of less than 1 mm.

    “To the best of our knowledge, these are the smallest optical waveguides ever created in polydimethylsiloxane, or PDMS,” Pu said. “Our flexible waveguides could be integrated into microfluidic lab-on-a-chip systems to eliminate bulky external optics needed to perform blood tests, for example. They might also deliver light for wearable devices such as a shirt featuring a display.” The new, flexible waveguides could also serve as building blocks for photonic printed circuit boards that use high-speed optical signals to transmit data in computers and other electronic devices.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Top 10 Federated Learning Applications and Use Cases

    Nowadays, individuals own an increasing number of devices—such as...

    Top 10 Federated Learning Companies in India

    Federated learning is transforming AI’s potential in India by...

    Top 10 Federated Learning Algorithms

    Federated Learning (FL) has been termed a revolutionary manner...

    Hon’ble PM Shri. Narendra Modi to inaugurate fourth edition of SEMICON India 2025

    Bharat set to welcome delegates from 33 Countries,...

    Rohde & Schwarz extends the broadband amplifier range to 18 GHz

    The new BBA series features higher field strengths for...

    EDOM Strengthens NVIDIA Jetson Thor Distribution Across APAC

    Empowering a New Era of Physical AI and Robotics...

    Govt Sanctions 23 Chip Design Ventures Under DLI Scheme

    MeitY approved 23 chip design projects under its Design...

    Rare Earth Export Curbs Lifted by China: India’s Semiconductor and Electronics Sectors Poised to Benefit

    India’s electronics sector, one of the major achievements under...

    MeitY May Announce 2–3 Small Semiconductor Projects Soon

    The Ministry of Electronics and Information Technology (MeitY) has...