HomeNewsIndia NewsNanowire use could be advanced in silicon photonics by control of nanowire...

    Nanowire use could be advanced in silicon photonics by control of nanowire growth

    A new way to grow nanowire networks has been developed in a highly controlled and fully reproducible manner by researchers from the Swiss Federal Institute of Technology Lausanne (EPFL) Laboratory of Semiconductor Materials, along with colleagues from Massachusetts Institute of Technology (MIT) and the Ioffe Institute in Russia.

    The standard process for producing nanowires is to make tiny holes in silicon monoxide and fill them with a nanodrop of liquid gallium. Research aimed at controlling this process has tended to focus on the diameter of the hole, but this approach has not paid off, said the researchers.

    The research found that vertical growth of nanowires starts at the oxide-substrate line interface. It was shown by altering the diameter-to-height ratio of the hole, they could fully control how the nanowires grew. The liquid gallium will solidify in a ring around the edge of the hole, which will prevent the nanowires from growing at a non-perpendicular angle, at the correct ratio. According to the researchers, this process should work for all types of nanowires.

    Advance nanowire research could be helped by this new production technique. Nanowires can alter how electricity or light passes through them, and could be used to add optical functionalities to electronic chips, making it possible to generate lasers directly on silicon chips and to integrate single-photon emitters onto chips for coding purposes. They could potentially be applied in solar panels to improve how sunlight is converted into electrical energy.

    Further samples should soon be developed, the team said. “We think that this discovery will make it possible to realistically integrate a series of nanowires on silicon substrates,” said professor Anna Fontcuberta i Morral. “Up to now, these nanowires had to be grown individually, and the process couldn’t be reproduced.”

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Nuvoton Launches Arbel NPCM8mnx System-in-Package (SiP) for AI Servers and Datacenter Infrastructure

    Breakthrough BMC Innovation Powers Secure, Scalable, and Open Compute...

    STMicroelectronics joins FiRa board, strengthening commitment to UWB ecosystem and automotive Digital Key adoption

    STMicroelectronics has announced that Rias Al-Kadi, General Manager of the...

    NEPCON ASIA 2025: Showcasing the Future of Smart Electronics Manufacturing

    NEPCON ASIA 2025, taking place from October 28 to...

    Renesas Expands Sensing Portfolio with 3 Magnet-Free IPS ICs & Web-Based Design Tool

    New Simulation & Optimization Platform Enables Custom Coil Designs...

    IEEE IEDM, 2025 Showcases Latest Technologies in Microelectronics, Themed “100 Years of FETs”

    The IEEE International Electron Devices Meeting (IEDM) is considered...

    OMNIVISION Introduces Next-Generation 8-MP Image Sensor For Exterior Automotive Cameras

    OMNIVISION announced its latest-generation automotive image sensor: the OX08D20, 8-megapixel (MP) CMOS...

    Vishay Intertechnology Expands Inductor Portfolio with 2000+ New SKUs and Increased Capacity

    Vishay Intertechnology, Inc. announced that it has successfully delivered...

    Keysight to Demonstrate AI-enabled 6G and Wireless Technologies at India Mobile Congress 2025

    Keysight Technologies will demonstrate 20 advanced AI-enabled 6G and...

    Ashwini Vaishnaw Approves NaMo Semiconductor Lab at IIT Bhubaneswar

    As part of a big push towards the development...