HomeElectronicsNew class of Human-powered Bioelectronic Device

    New class of Human-powered Bioelectronic Device

    A team of bioengineers at the UCLA Samueli School of Engineering has invented a novel soft and flexible self-powered bioelectronic device. The technology converts human body motions—from bending an elbow to subtle movements such as a pulse on one’s wrist—into electricity that could be used to power wearable and implantable diagnostic sensors.

    The researchers discovered that the magnetoelastic effect, which is the change of how much a material is magnetized when tiny magnets are constantly pushed together and pulled apart by mechanical pressure, can exist in a soft and flexible system—not just one that is rigid. To prove their concept, the team used microscopic magnets dispersed in a paper-thin silicone matrix to generate a magnetic field that changes in strength as the matrix undulated. As the magnetic field’s strength shifts, electricity is generated.

    A research study detailing the discovery, the theoretical model behind the breakthrough and the demonstration.

    “Our finding opens up a new avenue for practical energy, sensing and therapeutic technologies that are human-body-centric and can be connected to the Internet of Things,” said study leader Jun Chen, an assistant professor of bioengineering at UCLA Samueli. “What makes this technology unique is that it allows people to stretch and move with comfort when the device is pressed against human skin, and because it relies on magnetism rather than electricity, humidity and our own sweat do not compromise its effectiveness.”

    Chen and his team built a small, flexible magnetoelastic generator (about the size of a U.S. quarter) made of a platinum-catalyzed silicone polymer matrix and neodymium-iron-boron nanomagnets. They then affixed it to a subject’s elbow with a soft, stretchy silicone band. The magnetoelastic effect they observed was four times greater than similarly sized setups with rigid metal alloys. As a result, the device generated electrical currents of 4.27 milliamperes per square centimeter, which is 10,000 times better than the next best comparable technology.

    In fact, the flexible magnetoelastic generator is so sensitive that it could convert human pulse waves into electrical signals and act as a self-powered, waterproof heart-rate monitor. The electricity generated can also be used to sustainably power other wearable devices, such as a sweat sensor or a thermometer.

    There have been ongoing efforts to make wearable generators that harvest energy from human body movements to power sensors and other devices, but the lack of practicality has hindered such progress. For example, rigid metal alloys with magnetoelastic effect do not bend sufficiently to compress against the skin and generate meaningful levels of power for viable applications.

    Other devices that rely on static electricity tend not to generate enough energy. Their performance can also suffer in humid conditions, or when there is sweat on the skin. Some have tried to encapsulate such devices in order to keep water out, but that cuts down their effectiveness. The UCLA team’s novel wearable magnetoelastic generators, however, tested well even after being soaked in artificial perspiration for a week.

    A patent on the technology has been filed by the UCLA Technology Development Group.

    Related News

    Must Read

    Vishay Intertechnology’s 1200 V SiC MOSFET Power Modules for Power Efficiency

    Vishay Intertechnology, Inc. has introduced five new 1200 V...

    Budget 2026-27: Can New PLI Schemes Drive India’s A&D Tech Sovereignty?

    As the Union Budget approaches, the spotlight intensifies on...

    How to Build a Hacker-Proof Car: Insights from the Auto EV Tech Summit

    Speaking at the Auto EV Tech Vision Summit 2025,...

    Spectral Engineering and Control Architectures Powering Human-Centric LED Lighting

    As technological advancements continue to pursue personalisation & customisation...

    ​​Dell Technologies Enables NxtGen to Build India’s Largest AI Factory

    Story Highlights  Dell AI Factory with NVIDIA to provide...

    Quest Global Appoints Richard Bergman as Global Business Head of its Semiconductor Division

    Bengaluru, India, January 28th, 2026 – Quest Global, the world’s...

    Def-Tech CON 2026: India’s Biggest Conference on Advanced Aerospace, Defence and Space Technologies to Take Place in Bengaluru.

    The two-day international technology conference is focused on promoting...

    Anritsu Launches TestDeck Web Solution to enhance Test & Measurement

    ANRITSU CORPORATION has launched TestDeck, a web-based solution designed...