HomeElectronicsBattery and Energy StorageNew Theory Regarding Energy Efficiency in Lithium-ion Batteries

    New Theory Regarding Energy Efficiency in Lithium-ion Batteries

    An international research team featuring two Skoltech scientists has experimentally demonstrated that a long-standing explanation for low energy efficiency in lithium-ion batteries does not hold. The researchers explained the phenomenon in terms of slow electron transfer between oxygen and transition metal atoms in the cathode, rather than the atoms themselves undergoing migration.

    The lithium-ion batteries used in electric vehicles and gadgets today have about half the capacity their cousins with lithium-enriched oxide cathodes could deliver. The problem with the latter technology is it has low efficiency: You have to spend significantly more power to charge up the battery than it will ultimately provide. Over time, and particularly for applications consuming much energy, this lost power really adds up, making that type of batteries, commercially not viable as of now.

    To unlock the potential of the batteries with lithium-enriched oxide cathodes, researchers have to understand the mechanism behind their inefficiency and exactly where the lost energy goes. The recent study provides experimental evidence refuting the previously held explanation of the phenomenon—technically known as voltage hysteresis—and offers a new theory to account for it.

    As a lithium-ion battery gets charged, lithium ions travel between its two electrodes. Migrating toward the anode, they leave behind vacancies in the cathode. The other half of the cycle involves lithium ions going back as the energy gets expended, say to power a phone.

    “In the meantime, however, some of the transition metal atoms making up the cathode might have temporarily invaded the vacancies and then pulled back again, spending valuable energy on this jumping around. Or so the old theory of voltage hysteresis went,” study co-author and Skoltech Ph.D. student Anatoly Morozov said.

    To test this explanation, the researchers used a transmission electron microscope at Skoltech’s Advanced Imaging Core Facility to monitor the atomic structure of a lithium-enriched battery cathode made of a material with the formula Li1.17Ti0.33Fe0.5O2 at different stages in the battery’s charge-discharge cycle (see the image below). However, no significant migration of iron or titanium atoms to lithium vacancies was observed, suggesting that some other process was siphoning power.

    “Our findings inspired the team to seek the origin of voltage hysteresis elsewhere. What gives rise to the phenomenon is not reversible cation migration but rather the reversible transfer of electrons between the atoms of oxygen and transition metals. As the battery gets charged, some of the electrons from iron are hijacked by the oxygen atoms. Later on, they go back. This reversible transfer consumes some of the energy,” explained Professor Artem Abakumov, who heads the Center of Energy Science and Technology at Skoltech.

    “Understanding voltage hysteresis in terms of electron transfer might have immediate implications for mitigating this unwelcome effect to enable next-generation lithium-ion batteries with record-high energy density for powering electric cars and portable electronics,” he went on. “To enable that next step, chemists could manipulate the electron transfer barriers by varying the covalency of the cation-anion bonding, guided by the periodic table and such concepts as ‘chemical softness.'”

    “This demonstrates the power of advanced transmission electron microscopy for deciphering local structures of extreme complexity. It is really great that young researchers at Skoltech have direct and easy access to such sophisticated equipment as aberration-corrected electron microscopes, and opportunities for further training. This enables us to contribute to top-level battery research in collaboration with our international peers in both academia and the industry,” Morozov added.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Microchip Introduces 600V Gate Driver Family for High-Voltage Power Management Applications

    To meet the demanding needs of high-voltage power management...

    From Power Grids to EV Motors: Industry Flags Key Budget 2026 Priorities for India’s Next Growth Phase

    As India approaches Union Budget 2026–27, multiple industrial sectors—from...

    India’s Next Big Concern in the AI Era: Cybersecurity for Budget 2026

    Artificial Intelligence (AI), like any other technology, comes with...

    Anritsu Unveils Visionary 6G Solutions at MWC 2026

    ANRITSU CORPORATION showcases next-generation wireless solutions at MWC 2026...

    CEA-Leti Advances Silicon-Integrated Quantum Cascade Lasers for Mid-Infrared Photonics

    CEA-Leti presented new research at SPIE Photonics West highlighting major...

    How A Real-World Problem Turned Into Research Impact at IIIT-H

    The idea for a low-cost UPS monitoring system at...

    Microchip Expands PolarFire FPGA Smart Embedded Video Ecosystem providing enhanced video connectivity

    Microchip Technology has expanded its PolarFire FPGA smart embedded video ecosystem...

    element14 and Fulham announce global distribution partnership

    element14 has formed a new global distribution partnership with...