HomeNewsIndia NewsStretchable Electronics: Technology of the Future

    Stretchable Electronics: Technology of the Future

    Stretchable electronics is emerging as a promising new technology for next-generation wearable devices, according to a review published in Science and Technology of Advanced Materials.

    The technology has many possible applications for healthcare, energy and the military. But there are several challenges involved in finding suitable materials and manufacturing methods. The biggest challenge for making stretchable electronics is that each component must endure being compressed, twisted and applied to uneven surfaces while maintaining its performance, according to the review author Wei Wu, materials scientist at Wuhan University, China.

    Many different stretchable electronic components are being developed. For instance, low-cost stretchable conductors and electrodes are being made from silver nanowires and graphene. An urgent technical problem is the need for stretchable energy conversion and storage devices, such as batteries. Zinc-based batteries are promising candidates; however, more work is required to make them commercially viable.

    An alternative to batteries is stretchable nanogenerators, which can produce electricity from various freely available vibrations, such as wind or human body movements. Stretchable solar cells could also be used to power wearable electronic devices.

    By integrating multiple stretchable components, such as temperature, pressure and electrochemical sensors, it is possible to create a material resembling human skin that could use signals from sweat, tears or saliva for real-time, non-invasive healthcare monitoring, as well as for smart prosthetics or robots with enhanced sense capabilities. However, at present, fabrication of artificial skin remains time-consuming and complex.

    Currently there are two main strategies for manufacturing stretchable electronics. The first is to use intrinsically stretchable materials, such as rubber, which can endure large deformations. However, these materials have limitations, such as high electrical resistance.

    The second method is to make non-flexible materials stretchable using innovative design. For example, brittle semiconductor materials like silicon can be grown on a pre-stretched surface and then allowed to compress, creating buckling waves. Another method involves linking ‘islands’ of rigid conductive materials together using flexible interconnections, such as soft or liquid metals. Origami-inspired folding techniques can be used to make foldable electronic devices. In the future, stretchable electronics may be enhanced with new capabilities, such as wireless communication, self-charging or even self-healing.

    The next step after laboratory tests is to bring stretchable electronic devices to market. This requires cheaper materials and faster, scalable manufacturing methods, concludes the review author.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    Building Reliable 5G and 6G Networks Through Mobile Network Testing

    The development of communication networks has entered a revolutionary...

    Beyond the Screen: envisioning a giant leap forward for smartphones from physical objects to immersive experiences

    Author: STMicroelectronics Smartphones have become some of the most ubiquitous...

    Microchip’s SkyWire Tech Enables Nanosecond-Level Clock Sync Across Locations

    To protect critical infrastructure systems, SkyWire technology enables highly...

    Next Generation Hybrid Systems Transforming Vehicles

    The global automotive industry is undergoing a fundamental transformation...

    Tobii and STMicroelectronics enter mass production of breakthrough interior sensing technology

    Tobii and STMicroelectronics announced the beginning of mass production...

    Rohde & Schwarz unveils compact MXO 3 oscilloscopes with 4 and 8 channels

    Rohde & Schwarz expands its next-generation MXO oscilloscope portfolio...

    TI’s new power-management solutions enable scalable AI infrastructures

    Texas Instruments (TI) debuted new design resources and power-management...

    ESA awards Rohde & Schwarz for contributions to 30 years European Satellite Navigation

    The event brought together institutional and industrial partners, ESA...