HomeElectronicsBattery and Energy StorageSustainable, Cost-effective, Large-scale Energy Storage

    Sustainable, Cost-effective, Large-scale Energy Storage

    To produce a cost-effective redox flow battery, researchers based at the South China University of Technology have synthesized a molecular compound that serves as a low-cost electrolyte, enabling a stable flow battery that retains 99.98% capacity per cycle.

    Comprising two tanks of opposing liquid electrolytes, the battery pumps the positive and negative liquids along a membrane separator sandwiched between electrodes, facilitating ion exchanges to produce energy. Significant work has been dedicated to developing the negative electrolyte liquid, while the positive electrolyte liquid has received less attention, according to corresponding author Zhenxing Liang, professor in the Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology.

    “Aqueous redox flow batteries can realize the stable electrical output for using unsteady solar and wind energy, and they have been recognized as a promising large-scale energy storage technology,” Liang said. “Electroactive organic merit of element abundance, low cost and flexible molecular control over the electrochemical features for both positive and negative electrolytes are regarded as key to developing next-generation redox flow batteries.”

    Liang and his team focused on TEMPO, a chemical compound with easily reversed oxidation states and high potential for energy, a desired quality in positive electrolytes.

    “However, TEMPO cannot be directly applied to aqueous redox flow batteries due to the high hydrophobicity of the molecular skeleton,” Liang said, explaining that TEMPO, left unmodified, will not dissolve in the liquid needed to facilitate the energy exchange in the flow batteries. “We developed a strategy to functionalize TEMPO with viologen, an organic compound that has highly reversible redox reactions, to improve TEMPO’s hydrophilicity.”

    According to Liang, viologen is highly soluble in water, which increases TEMPO’s ability to dissolve in water. Viologen also chemically withdraws electrons from atomic partners, which elevates its potential to change its oxidative state. Viologen is also a salt, which endows TEMPO with what Liang calls “a decent conductivity” in an aqueous solution.

    When the synthesized viologen-modified TEMPO was tested in a flow battery, the researchers found that the battery retained capacity of 99.98% per cycle, meaning the battery could hold nearly all its stored energy when not in active use.

    “This work overcomes the disadvantages of TEMPO by viologen-functionalization and realizes its application in aqueous redox flow battery,” Liang said. “The molecular design concept provides a strategy for novel organic electroactive materials and lays a foundation for the application of aqueous organic flow battery.”

    Other contributors include Shuzhi Hu, Liwen Wang, Xianzhi Yuan, Zhipeng Xiang, Mingbao Huange, Peng Luo, Yufeng Liu and Zhiyong Fu, all with the Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology. Hu is also affiliated with the School of Materials Science and Engineering, Sun Yat-sen University.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Keysight Hosts AI Thought Leadership Conclave in Bengaluru

     Keysight Technologies, Inc. announced the AI Thought Leadership Conclave, a...

    Government approves 17 projects worth Rs. 7,172 crore under ECMS

    The Ministry of Electronics and IT announced for the...

    BD Soft strengthens cybersecurity offerings for BFSI and Fintech businesses with advanced solutions

    BD Software Distribution Pvt. Ltd. has expanded its Managed...

    Advancing Quantum Computing R&D through Simulation

    Courtesy: Synopsys Even as we push forward into new frontiers...

    Overcoming BEOL Patterning Challenges at the 3-NM Node

    Courtesy: Lam Research ● Controlling critical process parameters is key...

    Driving Innovation with High-Performance but Low-Power Multi-Core MCUs

    Courtesy: Renesas Over the last decade, the number of connected...

    Evolving from IoT to edge AI system development

    Courtesy: Avnet The advancement of machine learning (ML) along with...

    From the grid to the gate: Powering the third energy revolution

    Courtesy: Taylor, Robert, Mannesson, Henrik, Texas Instruments A significant change...

    Rohde & Schwarz India Pvt. Ltd. unveils R&D Centre in New Delhi, India

    Rohde & Schwarz announced the expansion of its Research...

    Rohde & Schwarz presents multi-purpose R&S NGT3600 high-precision dual-channel power supply

    Rohde & Schwarz showcases at productronica 2025 the R&S...