Speaking at the Auto EV Tech Vision Summit 2025, Bhaktha Keshavachara, CEO, Chara Technologies, highlights the Rare Earth challenges as faced by the world today and what potential policies can resolve them!
As the world strides towareds more sustainable solutions, the technologies we use become more rare-earth dependent, ranging from batteries to motors and the magnets used in the motors. To couple this phenomenon, a simultaneous energy transition is also taking shape. We are gradually moving towards achieving our energy goals from electrons, as compared to hydrocarbons previously, especially in transportation. This necessitates the need to locate supply chains in a stable region or wholly become self-sustainable in the raw materials, which are Rare Earths, the 17 elements put separately in the periodic table, as Bhaktha Keshavachara, CEO, Chara Technologies, puts it!
With Rare Earths, the global catch-22 lies for two specific reasons, namely:
- It is expensive to buy
- It is hazardous to extract
Since these materials are critical for our future, or the future dominated by Electric technologies like EVs, E-Buses, etc – It becomes imperative for us to search for ways to locate them in stable regions or make oneself self-sufficient in their production, or simply find ways. Let’s see what Bhaktha had to say about it!
Start Mining or Find Alternatives
“We have to start mining and extraction,” Bhaktha reiterates as he presents his first solution for the Rare-Earth catch-22. He goes on to recount the strategies adopted by the nations globally, including the US, which has interestingly reopened its mines in California for rare-earth minerals. Further, he underlines the ongoing global efforts to find alternative materials to build rare-earth magnets without using rare earths. He underlines NIRON from the US, which is experimenting with iron nitride magnets. He also points to Europe’s efforts towards finding an alternative in potassium-strontium magnets.
The problem with rare-earth mining is the hazardous nature of the process that leaves populations and people cancer-ridden for a long time. “If you see pictures on the net of the west coast of China, actually in central China, there are like cancer villages,” Bhaktha recounts.
Alternative Motor Technologies or Materials
Further, he suggests using alternative motor technologies to reduce the materials component of rare earths in the overall product. He refers to the various motor types in the same continuation, including electrically excited synchronous motors (EESM), induction motors (IM), and synchronous reluctance motors (SynRM). He also touches upon the light rare-earth materials, calling for more use of them as opposed to the heavy rare-earth materials that China holds a stronghold over, as he mentioned in his address
India’s Situation
Talking about India’s situation, Bhkatha says, “We have rare earths, but not all the 17 rare earths, but still we can do with whatever we have, and potentially we can import ore which has dysprosium and other rare earth materials.” He also recounts some past events wherein global price fluctuations anchored by China led to two big companies in India dropping projects of magnet manufacturing as the project suddenly became unviable in business terms.
In the same sequence, he reiterates the example of the US government that has stepped in to cap the minimum prices for the magnets irrespective of the global market fluctuations, to basically support the industry and also enable localisation of the technology and materials.
National efforts, Global Repercussions
In the midst of all these challenges, Bhaktha reaffirms his determination to face the storm in the face, calling upon the industry to innovate for the better. He says, “I think if we do the innovation and take the leadership role in prioritizing this, we not only have a huge opportunity to do something new in India, but there is a huge opportunity to export to the rest of the world because the rare-earth problem is a global problem.”

