HomeTechnologyULP Artificial Synapse for Next-generation AI Systems

    ULP Artificial Synapse for Next-generation AI Systems

    Brain-inspired computing is a promising candidate for next-generation computing technologies. Developing next-generation advanced artificial intelligence (AI) systems that can be as energy-efficient, lightweight, and adaptable as the human brain has attracted significant interest.

    “However, mimicking the brain’s neuroplasticity, which is the ability to change a neural network connection, in traditional artificial synapses using ultralow energy is extremely challenging,” said Desmond Loke, assistant professor at the Singapore University of Technology and Design (SUTD).

    An artificial synapse—comprising a gap across two neurons to allow electrical signals to pass and communicate with each other—can emulate the efficient neural signal transmission and memory formation process of the brain.

    To improve the energy efficiency of the artificial synapse, Loke’s research team has introduced a nanoscale deposit-only-metal-electrode fabrication process for artificial synapse for the first time. By using deposit-only nanopillar-based germanium-antimony-telluride memristive devices, the team designed a phase-change artificial synaptic device that has achieved an all-time-low energy consumption of 1.8 pJ per pair-pulse-based synaptic event. This is about 82% smaller compared to traditional artificial synapses.

    “The experiments have demonstrated that the artificial synapse based on phase-change materials could perform pair-pulse facilitation/depression, long-term potentiation/depression, and spike-timing-dependent plasticity with ultralow energies. We believe our finding can provide a promising approach for developing faster, larger scale artificial synapse arrays with significantly improved performance in AI tasks,” said Loke.

    Traditional heater electrodes formed by the deposited and etched process can cause/create a large degree of damage at the interfaces. Alternatively, the heater electrodes created by a deposit-only process in this study could create a smaller degree of damage at the interface. This may lead to a more robust, defect-free interface with substantially decreased contact resistance and its variations, consequently resulting in decreased operating current.

    Devendra Kumar
    Devendra Kumarhttps://www.eletimes.ai
    Devendra Kumar is the editor in chief of ELE Times. With over 25 years experience covering the electronics and application industry, Devendra has at various times focused on electronics, covering the global electronics industry with a particular focus on India His beat has always been emerging technologies and business models that enable a new generation of core electronics. In addition, he covers automotive, Internet of Things, and wireless/networking for ELE Times.

    Related News

    Must Read

    Tobii and STMicroelectronics enter mass production of breakthrough interior sensing technology

    Tobii and STMicroelectronics announced the beginning of mass production...

    Rohde & Schwarz unveils compact MXO 3 oscilloscopes with 4 and 8 channels

    Rohde & Schwarz expands its next-generation MXO oscilloscope portfolio...

    TI’s new power-management solutions enable scalable AI infrastructures

    Texas Instruments (TI) debuted new design resources and power-management...

    ESA awards Rohde & Schwarz for contributions to 30 years European Satellite Navigation

    The event brought together institutional and industrial partners, ESA...

    STMicroelectronics joins FiRa board, strengthening commitment to UWB ecosystem and automotive Digital Key adoption

    STMicroelectronics, a global semiconductor leader serving customers across the...

    STARLight Project chosen as the European consortium to lead in next-gen silicon photonics on 300 mm wafers

    The STARLight project is bringing together a consortium of leading...

    KYOCERA AVX RELEASES NEW KGP SERIES STACKED CAPACITORS

    KYOCERA AVX released the new KGP Series commercial-grade stacked...

    Microchip Unveils First 3 nm PCIe Gen 6 Switch to Power Modern AI Infrastructure

    Switchtec Gen 6 PCIe Fanout Switches deliver extra bandwidth,...

    Nuvoton Launches Arbel NPCM8mnx System-in-Package (SiP) for AI Servers and Datacenter Infrastructure

    Breakthrough BMC Innovation Powers Secure, Scalable, and Open Compute...