HomeIndustryRenewable EnergyDual-plating Strategy to Rapidly Construct Microbatteries

    Dual-plating Strategy to Rapidly Construct Microbatteries

    High-performance, micro-sized electrochemical energy storage devices are essential for future miniaturized electronic devices, such as smart medical implants, wireless sensors, and the Internet of Things. Microbatteries (MBs) typically show higher energy density and more stable voltage output than micro-supercapacitors.

    However, current MBs involve tedious construction procedures and unsatisfactory electrochemical performance. In addition, no methods exist to construct or manipulate a liquid microelectrode.

    A joint research team led by Prof. Qu Liangti from Tsinghua University, Prof. Zhang Zhipan from the Beijing Institute of Technology, and Prof. Liu Feng from the Institute of Mechanics of the Chinese Academy of Sciences (IMCAS) recently proposed a dual-plating strategy to rapidly construct new zinc–bromine microbatteries (Zn–Br2 MBs) with ultrahigh areal energy density and polarity-switchable functionality.

    In this strategy, the in-situ plating of cathodes and anodes on microelectrodes takes place during the charging process, thus eliminating the synthesis of active materials. Furthermore, the troublesome and time-consuming mass matching of cathodes and anodes in previous methods can also be avoided, since the new method involves plating in cathode-anode pairs.

    The researchers constructed the first aqueous Zn–Br2 MBs with liquid cathodes by using redox-active 1-methyl-3-propylimidazolium bromide, which not only prevents diffusion of Br3 but also shows fast kinetics during charging and discharging.

    The Zn–Br2 MBs showed equal numbers of cathodes and anodes. They also delivered record-high areal capacity and energy density, more than 10 times that of most planar microbatteries.

    Zn–Br2 MBs are polarity-switchable, thus allowing self-rectification during possible faulty operations such as wrongly connecting cathodes and anodes during charging.

    “The combination between the suitable binding strength and loose network microstructures in electrodes endows Zn–Br2 MBs with outstanding performance,” said Prof. Liu.

    This work offers new insights for promoting the development of miniaturized electronics through the fine design of their states, mechanical properties, and microstructures.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Nuvoton Launches Arbel NPCM8mnx System-in-Package (SiP) for AI Servers and Datacenter Infrastructure

    Breakthrough BMC Innovation Powers Secure, Scalable, and Open Compute...

    STMicroelectronics joins FiRa board, strengthening commitment to UWB ecosystem and automotive Digital Key adoption

    STMicroelectronics has announced that Rias Al-Kadi, General Manager of the...

    NEPCON ASIA 2025: Showcasing the Future of Smart Electronics Manufacturing

    NEPCON ASIA 2025, taking place from October 28 to...

    Renesas Expands Sensing Portfolio with 3 Magnet-Free IPS ICs & Web-Based Design Tool

    New Simulation & Optimization Platform Enables Custom Coil Designs...

    IEEE IEDM, 2025 Showcases Latest Technologies in Microelectronics, Themed “100 Years of FETs”

    The IEEE International Electron Devices Meeting (IEDM) is considered...

    OMNIVISION Introduces Next-Generation 8-MP Image Sensor For Exterior Automotive Cameras

    OMNIVISION announced its latest-generation automotive image sensor: the OX08D20, 8-megapixel (MP) CMOS...

    Vishay Intertechnology Expands Inductor Portfolio with 2000+ New SKUs and Increased Capacity

    Vishay Intertechnology, Inc. announced that it has successfully delivered...

    Keysight to Demonstrate AI-enabled 6G and Wireless Technologies at India Mobile Congress 2025

    Keysight Technologies will demonstrate 20 advanced AI-enabled 6G and...

    Ashwini Vaishnaw Approves NaMo Semiconductor Lab at IIT Bhubaneswar

    As part of a big push towards the development...