HomeElectronicsSimulation and SoftwareInfineon adds SPICE-based model generation to IPOSIM platform for more accurate system-level...

    Infineon adds SPICE-based model generation to IPOSIM platform for more accurate system-level simulation

    The Infineon Power Simulation Platform (IPOSIM) from Infineon Technologies AG is widely used to calculate losses and thermal behavior of power modules, discrete devices, and disc devices. The platform now integrates a SPICE-based model generation tool that incorporates external circuitry and gate driver selection into system-level simulations. The tool delivers more accurate results for static, dynamic, and thermal performance, taking into consideration non-linear semiconductor physics of the devices. This enables advanced device comparison under a wide range of operating conditions and faster design decisions. Developers can also customize their application environment to reflect real-world operating conditions directly within the workflow. As a result, they can optimize the application performance, shorten time-to-market, and reduce costly design iterations. IPOSIM integrates SPICE to support a wide range of applications where switching power and thermal performance are critical, including electric vehicle (EV) charging, solar, motor drives, energy storage systems (ESS), and industrial power supplies.

    In the global transition to a decarbonized future, power electronics are essential for enabling cleaner energy systems, sustainable transportation, and more efficient industrial processes. This transformation increases the demand for advanced simulation and validation tools that allow designers to innovate early in the development cycle. At the same time, they must deliver highly efficient, high-power-density designs such as EV chargers, solar inverters, motor drives, and industrial power supplies, while minimizing design iterations and reducing development costs. Switching losses and thermal performance are decisive factors in this process, yet traditional hardware testing remains time-consuming, costly, and limited in capturing real-world conditions.

    With the integration of SPICE, IPOSIM brings the simulation of real switching behavior fully online and helps users optimize their designs at an early stage of the development process. By extending system simulation to real-world conditions, the models make it possible to factor in critical parameters such as stray inductance, gate voltage and dead time. The device characterization reflects the switching behavior under more realistic operating scenarios, taking the selected gate driver into account. The capability is fully integrated into IPOSIM’s multi-device comparison workflow, enabling users to select devices marked with the SPICE icon, configure application environments, and follow a guided simulation process. With its system-level accuracy and intuitive workflow, IPOSIM’s new SPICE-based models enable faster device selection and more reliable design decisions.

    Related News

    Must Read

    How AI Is Powering the Road to Level 4 Autonomous Driving

    Courtesy: Nvidia When the Society of Automotive Engineers established its...

    Revolutionizing System Design with AI-Powered Real-Time Simulation

    Courtesy: Cadence The rising demand for AI infrastructure is driving...

    Microchip Technology Expands its India Footprint with a New Office Facility in Bengaluru

    Microchip Technology has expanded its India footprint with the...

    How Quantum Sensors and Post-Moore Measurement Tech Are Rewriting Reality

    When the chip industry stopped promising effortless doublings every...

    Rohde & Schwarz Mobile Test Summit 2025 on the future of wireless communications

    Rohde & Schwarz has announced that this year’s Mobile...

    Infineon and SolarEdge collaborate to advance high-efficiency power infrastructure for AI data centres

    Infineon and SolarEdge are partnering to advance the development...

    Evolving Priorities in Design Process of Electronic Devices

    One of the natal and most crucial stages of...

    New Radiation-Tolerant, High-Reliability Communication Interface Solution for Space Applications

    Microchip Technology announced the release of its Radiation-Tolerant (RT) ATA6571RT...