HomeTechnologyNew Polymer Fuel Cells can Cut Carbon Emissions

    New Polymer Fuel Cells can Cut Carbon Emissions

    A new high-temperature polymer fuel cell that operates at 80–160 degrees Celsius, with a higher-rated power density than state-of-the-art fuel cells, solves the longstanding problem of overheating, one of the most significant technical barriers to using medium-and heavy-duty fuel cells in transportation vehicles such as trucks and buses.

    Because current fuel cells operate at 60–80 degrees Celsius, they require large radiators and air intakes in order to stay cool enough to operate. To resolve this issue, Los Alamos National Laboratory scientists developed a new polymer fuel cell that operates at higher temperatures.

    “Fuel cells are energy conversion devices that produce electricity by electrochemically combining hydrogen and oxygen from the air. Like other electric vehicles, fuel cell vehicles are zero-emission vehicles; they have no smog-related or greenhouse gas tailpipe emissions,” said Yu Seung Kim, of Los Alamos’ Materials Synthesis & Integrated Devices group. “Moreover, hydrogen can be produced from diverse domestic resources with the potential for zero greenhouse gas emissions.”

    Hydrogen fuel cells are a good option for medium- and heavy-duty on-road transportation, including trucks and buses, and have marine, rail and aviation applications as well.

    The electrification of future medium- and heavy-duty transportation—whether with batteries or hydrogen fuel cells—is required given global efforts to cut emissions in transport. Compared to battery-powered vehicles, fuel cells offer fast fueling and adequate fuel storage for long-range applications. Over several decades, researchers have explored fuel cells that can operate above 100 degrees Celsius that enable simpler fuel cell systems through better heat and water management. While additional work is needed to establish the durability required for heavy-duty applications, this research provides a solution to fabricate highly performing fuel cells under hot and dry conditions.

    Advances to fuel cell technology also support the Intermountain West Energy Sustainability & Transitions (I-WEST) initiative, which is developing a technology roadmap to transition the western United States to an economically sustainable, carbon-neutral energy system. The roadmap will outline ways for the Intermountain West states to meet challenges, capitalize on opportunities, and build an equitable energy transition strategy.

    How they work

    Conventional high-temperature polymer electrolyte membrane fuel cells use phosphoric acid as an electrolyte at the electrode. In this research, the Los Alamos team designed a polymer electrolyte composed of a phosphonated polymer and a perfluorosulfonic acid. In this composite electrolyte structure, the team found that a proton from the perfluorosulfonic acid transfers to the phosphonated polymer and dramatically enhances proton conductivity. By implementing the composite polymer electrolyte, the researchers were able to achieve nearly 800 milliwatts per square centimeter rated power density of the fuel cell at 160 degrees Celsius, which is a 60 per cent improvement of the phosphoric acid-based fuel cells.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    Top 10 Federated Learning Algorithms

    Federated Learning (FL) has been termed a revolutionary manner...

    Hon’ble PM Shri. Narendra Modi to inaugurate fourth edition of SEMICON India 2025

    Bharat set to welcome delegates from 33 Countries,...

    Rohde & Schwarz extends the broadband amplifier range to 18 GHz

    The new BBA series features higher field strengths for...

    EDOM Strengthens NVIDIA Jetson Thor Distribution Across APAC

    Empowering a New Era of Physical AI and Robotics...

    Govt Sanctions 23 Chip Design Ventures Under DLI Scheme

    MeitY approved 23 chip design projects under its Design...

    Rare Earth Export Curbs Lifted by China: India’s Semiconductor and Electronics Sectors Poised to Benefit

    India’s electronics sector, one of the major achievements under...

    MeitY May Announce 2–3 Small Semiconductor Projects Soon

    The Ministry of Electronics and Information Technology (MeitY) has...

    Nuvoton Introduces Automotive-grade, Filter-Free 3W Class-D Audio Amplifier NAU83U25YG

    The New High-Efficiency Audio Solution Ideal for Dashboard, eCall,...

    Top 10 Deep Learning Applications and Use Cases

    A subfield of machine learning called "deep learning" uses...

    Infineon AIROC CYW20829 to support Engineered for Intel Evo Laptop Accessories Program

    Infineon Technologies AG announced that its AIROC CYW20829 Bluetooth...