HomeManufacturing3D PrintingNovel Understanding into the 3D Printing of Metals

    Novel Understanding into the 3D Printing of Metals

    3D printing has opened exciting new avenues for engineers and forced product designers to reimagine what is possible. The ability to print complex metallic parts using advanced alloys anywhere in the world is undoubtedly impressive but not without its flaws.

    Now scientists at Heriot-Watt University, in collaboration with Carnegie-Mellon University and Argonne National Laboratory from the U.S., have shed new light on this process, which promises to make metal 3D printing increasingly viable for manufacturers and a more sustainable option.

    Additive manufacturing, the technical name for 3D printing, encompasses a variety of material processing techniques, the most widely adopted amongst them being laser powder bed fusion (LPBF). It works by spreading thin layers of metallic powder particles that are bonded together through intense heat delivered by high-powered lasers. But this process can result in the formation of tiny pores that weaken the overall structure.

    This is a major drawback for the industry, particularly when highly-reliable components are required on a consistent basis. Over the last three years, scientists from the Institute of Photonics and Quantum Sciences at Heriot-Watt University, Edinburgh, have led a research project that examined the fundamental physics behind the LPBF process, and how this understanding can be used to mitigate defects in printed parts.

    Dr. Ioannis Bitharas, a research associate from the Institute of Photonics and Quantum Sciences at Heriot-Watt, explains: “Our research visualizes the interplay between all states of matter present when a laser interacts with metallic particles.

    “During the additive manufacturing process, the application of a high-powered laser to metal will result in a small pool of liquid metal as the particles fuse together. During this stage, a minute amount of metal evaporates and presses against the liquid, creating a cavity at the center of the melt pool. This cavity often referred to as a keyhole, can become unstable and collapse, leading to pores in the material. At the same time, the vapor shoots upwards from the keyhole, forming a plume, which interacts with the particles and can potentially disturb the spread layer.

    “Such events create tiny imperfections scattered throughout the component and, consequently, an unacceptable level of material porosity to many manufacturers.

    “The images we have captured provide, for the first time, a complete picture of such interactions and we can now tell with certainty what is happening.”

    By simultaneously using X-ray and schlieren imaging, the team analyzed the interplay between gas, vapor, liquid, and solid phases present during the printing process. They found a direct link between the behavior of the vapor plume released through the evaporation of metal and the overall stability of the molten material. The more dynamic the plume, the more unstable and porous the material. But by fine-tuning the laser parameters, such as adjusting its power, focused spot size and scan speed, the team discovered they could control the stability of the plume and melt pool, making the printed structure far more consistent.

    Using the plume as a “process signature” that can be visualized and monitored holds exciting new potential for a variety of industries that rely on high-performance components such as aerospace, automotive, healthcare, and defense,

    Professor Andrew Moore leads the Optical Diagnostics group in the Institute of Photonics and Quantum Sciences at Heriot-Watt University and has been involved in this research project from the start. He said: “Despite showing great promise, defects in printed parts still prevent metal additive manufacturing from fulfilling its potential. Research has so far focused on detecting and predicting defects based on the behavior of the liquid metal or particles, often overlooking the effects of the vapor jet and plume generated above the melt pool.

    “What we found has exciting new prospects for 3D printing: we can vastly reduce these imperfections and produce components that are far less likely to fail. We believe that this work will enable the creation of improved process monitoring and analytic tools that identify and prevent defects in the additive manufacturing of metals. Additionally, it will underpin a more predictive class of multiphysics models which include atmospheric effects and powder motion, allowing accurate a priori calculations of process maps.”

    This work was partly supported by Renishaw, the U.K.’s only manufacturer of LPBF systems, under their Strategic Alliance with Heriot-Watt University. The team will continue collaborating with Renishaw to use these new insights to improve the 3D printing machines of the future.

    The Heriot-Watt team’s research article, titled “The interplay between vapor, liquid, and solid phases in laser powder bed fusion,”

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Related News

    Must Read

    AI-Driven 6G: Smarter Design, Faster Validation

    Courtesy: Keysight Technologies Key takeaways: Telecom companies are hoping...

    Scaling up the Smart Manufacturing Mountain

    Courtesy: Rockwell Automation A step-by-step roadmap to adopting smart manufacturing...

    STMicroelectronics’ new GaN ICs platform for motion control boosts appliance energy ratings

    STMicroelectronics unveiled new smart power components that let home...

    Keysight Hosts AI Thought Leadership Conclave in Bengaluru

     Keysight Technologies, Inc. announced the AI Thought Leadership Conclave, a...

    Government approves 17 projects worth Rs. 7,172 crore under ECMS

    The Ministry of Electronics and IT announced for the...

    BD Soft strengthens cybersecurity offerings for BFSI and Fintech businesses with advanced solutions

    BD Software Distribution Pvt. Ltd. has expanded its Managed...

    Advancing Quantum Computing R&D through Simulation

    Courtesy: Synopsys Even as we push forward into new frontiers...

    Overcoming BEOL Patterning Challenges at the 3-NM Node

    Courtesy: Lam Research ● Controlling critical process parameters is key...

    Driving Innovation with High-Performance but Low-Power Multi-Core MCUs

    Courtesy: Renesas Over the last decade, the number of connected...