HomeNewsIndia NewsFirst Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines

    First Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines

    Aledia, a French startup pioneering a disruptive technology for microLED displays, announced it has manufactured the world’s first microLED chips produced on 300mm (12”) silicon wafers. The company, which developed its breakthrough technology on 200mm (8”) silicon wafers over the past eight years, will produce the chips on both 200mm and 300mm wafers. The larger wafers provide better economic payoff and cost-effective integration with smaller-node electronics, which are only available on 300mm silicon wafers. Aledia was spun out of CEA-Leti, a French research institute pioneering micro-and nanotechnologies, in 2012, and the work on 300mm wafers has been performed by joint Aledia and CEA-Leti teams.

    “We believe producing micro LEDs on large-area 300mm silicon wafers is a world’s first and opens this technology to huge potential-volume-manufacturing capabilities,” said Giorgio Anania, Aledia CEO and cofounder. “The larger size allows 60-100 smartphone displays to be made on a single 300mm wafer, versus approximately four-to-six using the present LED industry-standard, 4” sapphire substrate. Thanks to Aledia’s unique nanowire LED technology (3D LED), this can be done with commercially available processes and equipment since it uses standard-thickness (780µm) silicon wafers.”

    Traditional planar, “2D” micro LEDs are produced by depositing flat layers of gallium-nitride (GaN) crystal on sapphire wafers of 100-150mm diameter (4-6”), with the majority of production today being on 100mm (4”) wafers. Aledia’s microLED technology grows GaN nanowires (GaN crystals of sub-micron diameter) on top of large-area silicon (called “3D”). This 3D nanowire technology does not create any of the stresses seen on 2D chips, which build up as the wafer size is increased, and so allows the use of very large-size wafers. In addition, this silicon-based technology allows production in conventional microelectronics fabs, called silicon foundries, which can be ramped up to high volume production with extremely high yield.

    “We are very pleased to have helped Aledia push forward the state of the art of 3D LED manufacturing using our 300mm silicon processing line. We believe large-area silicon wafers are the best manufacturing platform in the world today for displays and give big advantages in manufacturability,” said Emmanuel Sabonnadière, CEO of CEA-Leti. “3D nanowire micro-LEDs have the potential to make serious penetration into large display markets. CEA-Leti is very active today in supporting the display industry’s transition to micro-LED technology.”

    “We believe the use of large-area silicon wafers and microelectronics foundries are the only way to deliver the huge volumes demanded by end-user markets,” Anania said. “For example, if only the large-screen TVs of 60” in diagonal and larger transitioned to silicon nanowire technology to obtain better image quality and lower manufacturing costs, this would require 24 million 300mm wafers per year, volumes that can only be delivered by the silicon industry and supply chains. Smartphones, laptops, and tablets would be on top of that.”

    Aledia’s technology is protected by 197 patent families, making Aledia the leading French startup company in France in filed patents.

    For more information, visit www.aledia.com

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.ai
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Related News

    Must Read

    The Invisible Hand: How Smart Technology Reshaped the RF and Microwave Development Track

    The world is not just connected; it is smart,...

    Nuvoton Technology Launches NuMicro M5531 Series Microcontrollers

    Nuvoton Technology announced the launch of NuMicro M5531 series...

    STMicroelectronics empowers data-hungry industrial transformation with unique dual-range motion sensor

    STMicroelectronics has revealed the ISM6HG256X, a tiny three-in-one motion...

    How AI Is Powering the Road to Level 4 Autonomous Driving

    Courtesy: Nvidia When the Society of Automotive Engineers established its...

    Revolutionizing System Design with AI-Powered Real-Time Simulation

    Courtesy: Cadence The rising demand for AI infrastructure is driving...

    Microchip Technology Expands its India Footprint with a New Office Facility in Bengaluru

    Microchip Technology has expanded its India footprint with the...

    How Quantum Sensors and Post-Moore Measurement Tech Are Rewriting Reality

    When the chip industry stopped promising effortless doublings every...

    Rohde & Schwarz Mobile Test Summit 2025 on the future of wireless communications

    Rohde & Schwarz has announced that this year’s Mobile...